如何在Pydantic Logfire中禁用重复日志和Span堆栈详情
在Python项目中使用Pydantic Logfire进行日志记录和监控时,开发者可能会遇到两个常见问题:日志重复输出和Span堆栈详情显示。本文将详细介绍如何优雅地解决这些问题。
问题现象分析
当开发者同时使用Python标准日志系统和Logfire时,可能会观察到以下现象:
-
日志重复问题:每条日志会被记录两次,一次是标准格式的日志,另一次是简化版的重复日志。例如:
标准格式日志:2025-01-18 21:22:16,772 INFO [aiogram.dispatcher] (dispatcher.py:start_polling:527) Start polling 简化重复日志:19:22:16.772 Start polling -
Span堆栈详情问题:Logfire会自动记录函数调用堆栈的详细信息,这些信息会以缩进形式显示在控制台,例如:
19:23:36.939 Calling src.bot.middleware.database_transaction 19:23:36.939 Calling src.bot.middleware.skip_service_messages
解决方案
经过深入分析,我们发现这些问题都可以通过简单的配置解决,无需使用临时性的代码修改方案。
禁用控制台日志输出
要完全禁用Logfire在控制台的日志输出(包括重复日志和Span堆栈详情),只需在项目的pyproject.toml配置文件中添加以下设置:
[tool.logfire]
console = false
这一配置会关闭Logfire的所有控制台输出,同时保留其他功能(如日志收集和监控)的正常工作。
配置注意事项
-
环境区分:建议根据环境(开发/生产)使用不同的配置。开发环境可能需要查看详细日志,而生产环境可能只需要收集日志而不需要控制台输出。
-
日志级别控制:除了关闭控制台输出外,还可以通过
level参数控制日志记录的级别,例如:[tool.logfire] level = "WARNING" -
服务名称和环境设置:虽然与问题无直接关系,但良好的实践是明确设置服务名称和环境:
logfire.configure( service_name='your_service', environment='production', )
替代方案比较
有些开发者可能会尝试通过代码临时修改配置,如:
logfire.DEFAULT_LOGFIRE_INSTANCE._console_log = False
但这种方案有几个缺点:
- 直接访问内部属性(
_console_log)不符合Python的最佳实践 - 可能在Logfire版本更新时失效
- 不够直观,难以维护
相比之下,使用配置文件的方式更加规范、可靠且易于维护。
最佳实践建议
-
明确日志策略:在项目初期就规划好日志记录策略,明确哪些信息需要记录、以什么格式记录、在哪里记录。
-
环境适配配置:使用不同的配置文件或环境变量来适应不同环境的日志需求。
-
监控与日志分离:考虑将监控数据(如Span信息)和业务日志分开处理,使用不同的传输通道。
-
定期审查日志配置:随着项目发展,定期审查日志配置是否仍然满足需求。
通过以上方法,开发者可以优雅地控制Logfire的日志输出行为,保持日志系统的整洁和高效。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00