首页
/ 基于LLM-Red-Team/kimi-free-api的Streamlit聊天应用开发实践

基于LLM-Red-Team/kimi-free-api的Streamlit聊天应用开发实践

2025-06-13 18:24:48作者:蔡丛锟

项目背景与核心功能

LLM-Red-Team/kimi-free-api项目提供了一个本地化的聊天补全接口,本文展示如何利用该API配合Streamlit快速构建一个支持多模态输入的智能对话应用。该应用具备以下技术特性:

  • 支持文本/文件/图片混合输入
  • 可切换在线搜索与离线模式
  • 完整的对话历史管理
  • 响应式交互界面

关键技术实现解析

1. 多模态文件处理机制

应用通过base64编码实现了多种文件类型的统一处理:

def process_files(files:list):
    # 对上传文件进行类型判断和编码转换
    files = [(f.name,f.name.split(".")[-1],f.getvalue()) for f in files]
    files_base64 = []
    for fb in files:
        fb_base64 = base64.b64encode(fb[2]).decode('utf-8')
        # 根据扩展名生成对应的data URL
        if fb[1] == "png":
            url = f"data:image/png;base64,{fb_base64}"
        # 其他文件类型处理...

2. 对话状态管理

采用Streamlit的session_state实现对话历史持久化:

if "message_history" not in st.session_state:
    st.session_state.message_history = []  # 实际发送给API的消息
    st.session_state.message_history_init = []  # 界面展示用的消息

3. API调用封装

对kimi-free-api的标准化调用封装:

def generate_response(message_history,use_search):
    headers = {"Authorization": f"Bearer {api_key}"}
    payload = {
        "model": model,
        "messages": message_history,
        "use_search": use_search  # 控制是否启用在线搜索
    }
    response = requests.post(base_url, json=payload, headers=headers)
    return response.json()["choices"][0]["message"]["content"]

应用架构设计亮点

  1. 双消息存储策略

    • message_history:包含base64编码的完整消息,用于API调用
    • message_history_init:保留原始文件引用,用于界面展示
  2. 智能模式切换

    • 当用户上传文件时自动禁用在线搜索
    • 提供显式的模式切换开关
  3. 响应式界面组件

    • 使用Streamlit的chat_message组件实现对话气泡
    • 文件上传器支持多文件选择
    • 侧边栏集中管理功能开关

开发经验总结

  1. 文件处理注意事项

    • 二进制文件必须进行base64编码
    • 不同MIME类型需要正确声明
    • 图片与其他文件需要区分处理
  2. 性能优化建议

    • 大文件上传前应添加大小限制
    • 可考虑实现分块传输
    • 对历史消息实现分页加载
  3. 扩展可能性

    • 添加打字机效果的消息逐字输出
    • 实现消息编辑功能
    • 增加对话导出/导入能力

结语

本文展示的Streamlit实现方案为开发者提供了快速构建基于kimi-free-api的对话应用的参考模板。通过合理的架构设计和状态管理,仅需200余行代码即可实现功能完整的智能对话界面,体现了现代Python工具链在AI应用开发中的高效性。开发者可根据实际需求进一步扩展文件处理能力或优化交互体验。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8