使用KAN神经网络学习加法运算的注意事项
2025-05-14 03:39:11作者:昌雅子Ethen
在探索KAN神经网络的应用过程中,许多开发者会遇到一个常见问题:如何正确设置目标函数来学习简单的加法运算。本文将通过一个实际案例,深入分析这个问题及其解决方案。
问题背景
当使用KAN神经网络学习加法运算时,开发者通常会尝试定义一个lambda函数作为目标函数。初始直觉可能会引导我们写出类似这样的代码:
f = lambda x: x[:,0] + x[:,1]
然而,这种写法在实践中往往会导致训练失败,表现为损失函数无法有效下降,模型无法正确学习加法运算。
问题根源分析
这个问题的核心在于张量维度的不匹配。在神经网络训练中,保持输入输出的维度一致性至关重要。上述写法存在两个关键问题:
- 索引方式
x[:,0]会降低张量的维度,从2D变为1D - 加法运算后的输出维度与模型期望的输出维度不一致
正确的实现方法
根据KAN项目维护者的建议,正确的实现方式应该是:
f = lambda x: x[:,[0]] + x[:,[1]]
这种写法通过使用[:,[0]]而不是[:,0]来保持张量的二维结构。另一种等价的写法是:
f = lambda x: x[:, 0, np.newaxis] + x[:, 1, np.newaxis]
或者使用None代替np.newaxis:
f = lambda x: x[:, 0, None] + x[:, 1, None]
技术原理
在NumPy和PyTorch等科学计算库中,数组索引操作会影响结果的维度:
x[:,0]会从形状为(N,2)的数组中提取第一列,结果为形状(N,)x[:,[0]]会保持二维结构,结果为形状(N,1)
在神经网络训练中,保持维度一致性对于损失计算和反向传播至关重要。当维度不匹配时,梯度计算会出现问题,导致训练失败。
实践建议
- 在定义目标函数时,始终注意保持输入输出的维度一致性
- 可以使用
np.newaxis或None来显式控制维度 - 如果训练仍然不收敛,可以尝试调整正则化参数
lamb - 按照hellokan示例中的流程:训练→剪枝→再训练,直到无法进一步剪枝
总结
通过这个案例我们可以看到,在神经网络实现中,张量维度的细微差别可能导致完全不同的训练结果。理解这些底层细节对于成功应用KAN等新型神经网络架构至关重要。正确的维度处理不仅能解决加法运算的学习问题,也为后续更复杂的函数学习奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19