使用KAN神经网络学习加法运算的注意事项
2025-05-14 06:53:39作者:昌雅子Ethen
在探索KAN神经网络的应用过程中,许多开发者会遇到一个常见问题:如何正确设置目标函数来学习简单的加法运算。本文将通过一个实际案例,深入分析这个问题及其解决方案。
问题背景
当使用KAN神经网络学习加法运算时,开发者通常会尝试定义一个lambda函数作为目标函数。初始直觉可能会引导我们写出类似这样的代码:
f = lambda x: x[:,0] + x[:,1]
然而,这种写法在实践中往往会导致训练失败,表现为损失函数无法有效下降,模型无法正确学习加法运算。
问题根源分析
这个问题的核心在于张量维度的不匹配。在神经网络训练中,保持输入输出的维度一致性至关重要。上述写法存在两个关键问题:
- 索引方式
x[:,0]会降低张量的维度,从2D变为1D - 加法运算后的输出维度与模型期望的输出维度不一致
正确的实现方法
根据KAN项目维护者的建议,正确的实现方式应该是:
f = lambda x: x[:,[0]] + x[:,[1]]
这种写法通过使用[:,[0]]而不是[:,0]来保持张量的二维结构。另一种等价的写法是:
f = lambda x: x[:, 0, np.newaxis] + x[:, 1, np.newaxis]
或者使用None代替np.newaxis:
f = lambda x: x[:, 0, None] + x[:, 1, None]
技术原理
在NumPy和PyTorch等科学计算库中,数组索引操作会影响结果的维度:
x[:,0]会从形状为(N,2)的数组中提取第一列,结果为形状(N,)x[:,[0]]会保持二维结构,结果为形状(N,1)
在神经网络训练中,保持维度一致性对于损失计算和反向传播至关重要。当维度不匹配时,梯度计算会出现问题,导致训练失败。
实践建议
- 在定义目标函数时,始终注意保持输入输出的维度一致性
- 可以使用
np.newaxis或None来显式控制维度 - 如果训练仍然不收敛,可以尝试调整正则化参数
lamb - 按照hellokan示例中的流程:训练→剪枝→再训练,直到无法进一步剪枝
总结
通过这个案例我们可以看到,在神经网络实现中,张量维度的细微差别可能导致完全不同的训练结果。理解这些底层细节对于成功应用KAN等新型神经网络架构至关重要。正确的维度处理不仅能解决加法运算的学习问题,也为后续更复杂的函数学习奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.2 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
662