使用KAN神经网络学习加法运算的注意事项
2025-05-14 03:39:11作者:昌雅子Ethen
在探索KAN神经网络的应用过程中,许多开发者会遇到一个常见问题:如何正确设置目标函数来学习简单的加法运算。本文将通过一个实际案例,深入分析这个问题及其解决方案。
问题背景
当使用KAN神经网络学习加法运算时,开发者通常会尝试定义一个lambda函数作为目标函数。初始直觉可能会引导我们写出类似这样的代码:
f = lambda x: x[:,0] + x[:,1]
然而,这种写法在实践中往往会导致训练失败,表现为损失函数无法有效下降,模型无法正确学习加法运算。
问题根源分析
这个问题的核心在于张量维度的不匹配。在神经网络训练中,保持输入输出的维度一致性至关重要。上述写法存在两个关键问题:
- 索引方式
x[:,0]会降低张量的维度,从2D变为1D - 加法运算后的输出维度与模型期望的输出维度不一致
正确的实现方法
根据KAN项目维护者的建议,正确的实现方式应该是:
f = lambda x: x[:,[0]] + x[:,[1]]
这种写法通过使用[:,[0]]而不是[:,0]来保持张量的二维结构。另一种等价的写法是:
f = lambda x: x[:, 0, np.newaxis] + x[:, 1, np.newaxis]
或者使用None代替np.newaxis:
f = lambda x: x[:, 0, None] + x[:, 1, None]
技术原理
在NumPy和PyTorch等科学计算库中,数组索引操作会影响结果的维度:
x[:,0]会从形状为(N,2)的数组中提取第一列,结果为形状(N,)x[:,[0]]会保持二维结构,结果为形状(N,1)
在神经网络训练中,保持维度一致性对于损失计算和反向传播至关重要。当维度不匹配时,梯度计算会出现问题,导致训练失败。
实践建议
- 在定义目标函数时,始终注意保持输入输出的维度一致性
- 可以使用
np.newaxis或None来显式控制维度 - 如果训练仍然不收敛,可以尝试调整正则化参数
lamb - 按照hellokan示例中的流程:训练→剪枝→再训练,直到无法进一步剪枝
总结
通过这个案例我们可以看到,在神经网络实现中,张量维度的细微差别可能导致完全不同的训练结果。理解这些底层细节对于成功应用KAN等新型神经网络架构至关重要。正确的维度处理不仅能解决加法运算的学习问题,也为后续更复杂的函数学习奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134