使用KAN神经网络学习加法运算的注意事项
2025-05-14 00:52:52作者:昌雅子Ethen
在探索KAN神经网络的应用过程中,许多开发者会遇到一个常见问题:如何正确设置目标函数来学习简单的加法运算。本文将通过一个实际案例,深入分析这个问题及其解决方案。
问题背景
当使用KAN神经网络学习加法运算时,开发者通常会尝试定义一个lambda函数作为目标函数。初始直觉可能会引导我们写出类似这样的代码:
f = lambda x: x[:,0] + x[:,1]
然而,这种写法在实践中往往会导致训练失败,表现为损失函数无法有效下降,模型无法正确学习加法运算。
问题根源分析
这个问题的核心在于张量维度的不匹配。在神经网络训练中,保持输入输出的维度一致性至关重要。上述写法存在两个关键问题:
- 索引方式
x[:,0]会降低张量的维度,从2D变为1D - 加法运算后的输出维度与模型期望的输出维度不一致
 
正确的实现方法
根据KAN项目维护者的建议,正确的实现方式应该是:
f = lambda x: x[:,[0]] + x[:,[1]]
这种写法通过使用[:,[0]]而不是[:,0]来保持张量的二维结构。另一种等价的写法是:
f = lambda x: x[:, 0, np.newaxis] + x[:, 1, np.newaxis]
或者使用None代替np.newaxis:
f = lambda x: x[:, 0, None] + x[:, 1, None]
技术原理
在NumPy和PyTorch等科学计算库中,数组索引操作会影响结果的维度:
x[:,0]会从形状为(N,2)的数组中提取第一列,结果为形状(N,)x[:,[0]]会保持二维结构,结果为形状(N,1)
在神经网络训练中,保持维度一致性对于损失计算和反向传播至关重要。当维度不匹配时,梯度计算会出现问题,导致训练失败。
实践建议
- 在定义目标函数时,始终注意保持输入输出的维度一致性
 - 可以使用
np.newaxis或None来显式控制维度 - 如果训练仍然不收敛,可以尝试调整正则化参数
lamb - 按照hellokan示例中的流程:训练→剪枝→再训练,直到无法进一步剪枝
 
总结
通过这个案例我们可以看到,在神经网络实现中,张量维度的细微差别可能导致完全不同的训练结果。理解这些底层细节对于成功应用KAN等新型神经网络架构至关重要。正确的维度处理不仅能解决加法运算的学习问题,也为后续更复杂的函数学习奠定了基础。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
104
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
598
158
暂无简介
Dart
566
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
249
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
101
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446