Vercel AI SDK 中 OpenAI 使用量统计异常问题解析
问题背景
在使用 Vercel AI SDK 进行 OpenAI 模型调用时,开发者可能会遇到一个关于使用量统计的异常现象。当通过 createOpenAI
方法创建客户端实例并传递给 streamText
方法时,返回结果中的使用量字段(包括 promptTokens、completionTokens 和 totalTokens)会出现 NaN 值,而直接使用 openai 实例则能正常返回正确的令牌数量。
问题表现
具体表现为两种使用方式的差异:
- 直接使用 openai 实例:能够正确返回使用量数据,如
{ promptTokens: 57, completionTokens: 30, totalTokens: 87 }
- 使用 createOpenAI 创建实例:返回的使用量数据为
{ promptTokens: NaN, completionTokens: NaN, totalTokens: NaN }
技术分析
这个问题实际上与 Vercel AI SDK 中 OpenAI 客户端的兼容性模式设置有关。在最新版本的 SDK 中,createOpenAI
方法默认可能不会启用严格的兼容性模式,这会导致使用量统计功能失效。
解决方案
通过在创建 OpenAI 客户端时显式设置兼容性模式为 "strict",可以解决这个问题:
const openai = createOpenAI({
apiKey: process.env.OPENAI_API_KEY,
compatibility: "strict",
});
深入理解
兼容性模式的作用
"strict" 兼容性模式确保了客户端与 OpenAI API 的完全兼容,包括响应格式和使用量统计等功能。当不启用此模式时,某些高级功能(如使用量统计)可能会因为响应格式的差异而无法正常工作。
使用量统计的重要性
在 AI 应用开发中,准确统计令牌使用量对于以下方面至关重要:
- 成本控制:OpenAI 的计费基于令牌使用量
- 性能监控:了解每次调用的资源消耗
- 配额管理:避免超出 API 调用限制
最佳实践建议
-
始终启用严格兼容模式:除非有特殊需求,否则建议在创建 OpenAI 客户端时都设置
compatibility: "strict"
-
版本管理:确保使用的 SDK 版本是最新的,如示例中的
@ai-sdk/openai@1.3.20
和ai@4.3.10
-
错误处理:如示例代码所示,实现完善的错误处理机制,特别是在生产环境中
-
监控使用量:即使解决了统计问题,也建议实现额外的使用量监控机制,如日志记录或数据库存储
总结
Vercel AI SDK 提供了强大的 OpenAI 集成能力,但在使用时需要注意兼容性设置以确保所有功能正常工作。通过理解底层机制和遵循最佳实践,开发者可以充分利用 SDK 的功能,同时确保应用稳定性和可观测性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









