Appium/Appium 项目中关于 Android 设备隐藏 API 策略错误的深度解析
问题背景
在移动应用自动化测试领域,Appium 作为一款主流的开源测试框架,经常需要处理各种 Android 设备的兼容性问题。近期,一个典型的问题出现在某些定制化 Android 设备上,当尝试执行特定的 ADB 命令来修改系统设置时,会遇到权限拒绝的错误。
核心错误分析
错误日志显示,当 Appium 尝试通过 ADB 执行以下命令时出现问题:
settings delete global hidden_api_policy_pre_p_apps;
settings delete global hidden_api_policy_p_apps;
settings delete global hidden_api_policy
系统返回了安全异常:
java.lang.SecurityException: Permission denial: writing to settings requires:android.permission.WRITE_SECURE_SETTINGS
这表明测试设备上的 Android 系统对修改这些全局设置有着严格的权限控制,特别是对于 WRITE_SECURE_SETTINGS 这类高危权限。
技术原理深入
隐藏 API 策略是什么
Android 9 (Pie) 引入了对非 SDK 接口(即隐藏 API)的限制。这些 API 虽然存在于系统中,但 Google 不希望开发者使用它们,因为它们可能在未来的版本中发生变化或被移除。
为什么 Appium 需要修改这些设置
在自动化测试场景中,被测应用可能需要访问一些隐藏 API 才能正常工作。Appium 尝试通过修改这些策略设置来放宽限制,确保测试能够顺利进行。
设备定制化的影响
许多设备制造商(如 Realme、小米、华为等)会对 Android 系统进行深度定制。这些定制可能包括:
- 修改权限管理系统
- 移除或限制某些系统命令
- 添加额外的安全层
解决方案
推荐方案:忽略策略错误
最直接的解决方案是在 Appium 的 desired capabilities 中添加:
"appium:ignoreHiddenApiPolicyError": true
这个选项会告诉 Appium 跳过对隐藏 API 策略的修改尝试,继续执行后续的测试步骤。
替代方案:手动配置设备
对于需要严格测试隐藏 API 使用情况的场景,可以考虑:
- 在测试前手动配置设备
- 使用已 root 的设备进行测试
- 联系设备制造商获取特殊权限
最佳实践建议
- 设备选择:优先选择接近原生 Android 系统的设备进行自动化测试
- 能力配置:根据设备类型灵活调整 desired capabilities
- 错误处理:在测试脚本中添加适当的异常处理逻辑
- 日志分析:建立完善的日志收集和分析机制,快速定位类似问题
总结
这个问题揭示了移动自动化测试中一个常见的挑战:设备碎片化和厂商定制化带来的兼容性问题。通过理解 Android 系统的权限机制和 Appium 的工作原理,测试工程师可以更有效地解决这类问题,确保自动化测试的稳定性和可靠性。
对于测试团队而言,建立设备兼容性矩阵和问题知识库是长期解决这类问题的有效方法,可以显著提高测试效率和稳定性。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++030Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









