Choices.js 中保留原始 option 元素属性的技术实践
背景介绍
在使用 Choices.js 这个强大的选择框库时,开发者经常会遇到需要保留原始 select 元素中 option 标签自定义属性的需求。这些自定义属性(如 data-*)可能包含了重要的业务数据,需要在 Choices.js 渲染的界面中继续使用。
问题核心
当使用 Choices.js 替换原生 select 元素时,默认情况下它会创建一个全新的 UI 组件,而原始 option 元素的自定义属性不会自动保留。这导致开发者需要寻找方法来访问和保留这些原始属性。
解决方案
Choices.js 提供了 callbackOnCreateTemplates 回调函数,这是一个强大的扩展点,允许开发者自定义模板的创建过程。通过这个回调,我们可以访问并保留原始 option 元素的属性。
实现方法
-
使用 callbackOnCreateTemplates: 这是 Choices.js 提供的核心扩展点,允许开发者覆盖默认的模板创建逻辑。
-
保留原始属性: 在创建自定义模板时,可以从原始 option 元素中提取需要的属性,并将它们应用到新创建的 Choices 元素上。
-
示例代码:
const choicesInstance = new Choices(selectElement, {
callbackOnCreateTemplates: function() {
const originalTemplates = Choices.defaults.templates;
return {
choice: (classNames, data) => {
// 获取原始 option 元素
const originalOption = selectElement.options[data.choiceId];
// 创建默认的 choice 元素
const choiceEl = originalTemplates.choice.call(this, classNames, data);
// 保留原始 data 属性
if (originalOption) {
Array.from(originalOption.attributes).forEach(attr => {
if (attr.name.startsWith('data-')) {
choiceEl.dataset[attr.name.replace('data-', '')] = attr.value;
}
});
}
return choiceEl;
},
item: (classNames, data) => {
// 类似处理 item 模板
// ...
}
};
}
});
技术细节
-
原始 option 访问: 通过
selectElement.options[data.choiceId]可以获取到对应的原始 option 元素。 -
属性转移: 使用
datasetAPI 可以方便地处理和转移 data-* 属性。 -
模板继承: 在自定义模板中,首先调用原始模板方法 (
originalTemplates.choice.call) 确保基础功能正常,然后再添加自定义逻辑。
最佳实践
-
选择性保留属性: 不是所有原始属性都需要保留,应根据业务需求选择性地转移重要属性。
-
性能考虑: 对于包含大量选项的选择框,属性转移操作可能会影响性能,应进行必要的优化。
-
兼容性处理: 添加适当的空值检查,确保代码在原始 option 不存在时也能正常工作。
总结
通过合理利用 Choices.js 的 callbackOnCreateTemplates 回调,开发者可以灵活地保留和转移原始 select 元素中的自定义属性,实现更复杂的业务需求。这种方法既保持了 Choices.js 的强大功能,又解决了与原始元素属性的兼容性问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00