DeepFlow项目中async-profiler数据集成问题分析与解决方案
背景介绍
DeepFlow作为一款云原生可观测性平台,支持集成多种性能剖析工具的数据。其中对async-profiler工具的支持是其重要功能之一。async-profiler是一款低开销的Java性能分析工具,能够生成JFR格式的性能剖析数据。
问题现象
在使用DeepFlow集成async-profiler数据时,发现通过async-profiler生成的CPU剖析数据(.jfr文件)上传后,DeepFlow的profile表中没有生成相应数据。而同样的上传流程,当使用wall模式生成的剖析数据时却能正常工作。
技术分析
经过深入调试发现,问题根源在于DeepFlow服务端处理JFR数据时调用了pyroscope库的Parse方法。该库在早期版本中对async-profiler生成的CPU事件类型支持不完善,导致数据被跳过。
async-profiler支持多种剖析模式:
- CPU模式:基于采样方式记录CPU使用情况
- Wall模式:基于时钟周期定期进行剖析
- 其他模式:如内存分配、锁竞争等
虽然Wall模式也是CPU相关的剖析,但它使用不同的时间采样机制,这种模式下的数据能够被pyroscope库正确处理。
解决方案
针对这一问题,目前有以下几种解决方案:
-
使用Wall模式替代CPU模式: 修改async-profiler命令参数,将
-e cpu改为-e wall,例如:./asprof -e wall -d 10 -f profile.jfr <PID>这种模式同样可以提供CPU使用情况的剖析数据,且能被DeepFlow正确处理。
-
升级pyroscope库: 如果项目允许,可以尝试升级DeepFlow依赖的pyroscope库版本,新版本可能已经完善了对async-profiler CPU模式的支持。
-
修改DeepFlow代码: 对于有能力的技术团队,可以修改DeepFlow中处理JFR数据的相关代码,增加对async-profiler CPU模式数据的支持。
最佳实践建议
对于需要使用DeepFlow集成async-profiler数据的用户,建议:
- 优先使用Wall模式进行剖析,它同样能反映CPU使用情况且兼容性更好
- 上传数据时确保使用正确的Content-Type(application/jfr)
- 对于大规模生产环境,建议先在小规模测试环境中验证数据集成效果
- 关注DeepFlow的版本更新,及时获取对async-profiler更完善的支持
总结
DeepFlow与async-profiler的集成整体上是可行的,但在特定剖析模式下可能会遇到兼容性问题。通过选择合适的剖析模式或升级相关组件,可以解决大多数集成问题。随着DeepFlow项目的持续发展,对各种剖析工具的支持也将越来越完善。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0105
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00