NeuralForecast项目中样本内预测功能异常问题分析
2025-06-24 16:24:22作者:凤尚柏Louis
问题背景
在时间序列预测领域,NeuralForecast作为一个强大的深度学习预测库,提供了样本内预测(predict_insample)功能,允许用户在训练数据范围内进行预测验证。然而,近期多位用户报告在使用iTransformer等模型时遇到了样本内预测功能异常的问题。
问题现象
用户在使用iTransformer、DLinear、NBeatsx等模型进行样本内预测时,系统抛出"ValueError: could not broadcast input array from shape (X,1) into shape (Y,1)"错误。这个错误表明预测结果的形状与预期形状不匹配,导致数据无法正确广播。
典型错误示例如下:
ValueError: could not broadcast input array from shape (17388,1) into shape (17412,1)
问题根源分析
经过技术社区的分析,这个问题主要源于模型在处理输入数据时的边界条件判断不足。具体来说:
- 当输入数据的长度不足以满足模型input_size要求时,系统未能正确处理数据填充(padding)操作
- 在_base_multivariate.py文件中,对输入数据的截取逻辑存在缺陷,没有考虑到边界情况
- 预测步长(step_size)与输入尺寸(input_size)的交互处理不够健壮
解决方案
技术社区已经提出了修复方案,主要涉及对_base_multivariate.py文件的修改。核心修改点包括:
- 增加对输入数据长度的检查
- 当数据不足时,自动进行零填充(zero-padding)
- 优化数据截取逻辑,确保预测步骤与输入尺寸的兼容性
修改后的关键代码如下:
initial_input = temporal.shape[-1] - self.test_size
if initial_input <= self.input_size:
padder_left = nn.ConstantPad1d(
padding=(self.input_size - initial_input, 0), value=0
)
temporal = padder_left(temporal)
predict_step_size = self.predict_step_size
cutoff = -self.input_size - self.test_size
temporal = temporal[:, :, cutoff:]
影响范围
该问题影响以下模型:
- iTransformer
- DLinear
- NBeatsx
- TimeMixer
临时解决方案
对于急需使用该功能的用户,可以手动应用上述代码修改作为临时解决方案。但建议等待官方发布正式修复版本,以确保与其他功能的兼容性。
技术建议
- 在使用样本内预测功能时,确保输入数据长度足够满足模型要求
- 对于边缘情况,考虑手动添加数据填充
- 关注模型的input_size和预测step_size参数的合理配置
- 定期更新库版本以获取最新修复
总结
样本内预测是时间序列模型验证的重要功能,NeuralForecast团队已经意识到这个问题并正在积极修复。用户社区也贡献了有效的解决方案,展现了开源协作的优势。建议用户关注官方更新,以获得更稳定的使用体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
211