Shlink项目中短链接访问统计的性能优化方案
2025-06-18 17:10:26作者:吴年前Myrtle
背景与问题分析
在现代短链接服务中,访问统计功能是核心需求之一。Shlink作为一个开源的短链接服务,在处理大量访问数据时遇到了性能瓶颈。具体表现为:当用户需要按照访问量排序短链接列表时,系统需要执行COUNT(DISTINCT visits)聚合查询,这在数据量大的情况下会导致严重的性能问题。
传统方案的局限性
传统方案直接通过SQL的COUNT聚合函数统计每个短链接的访问量,这种方案存在两个主要问题:
- 性能问题:当访问记录表(visits)数据量庞大时,COUNT操作需要扫描大量数据,导致查询响应时间显著增加。
- 并发问题:如果采用简单的计数器字段直接更新方案,高并发场景下会导致行锁争用,影响系统吞吐量。
优化方案:分槽计数器模式
Shlink团队提出了一种创新的解决方案——分槽计数器模式(Slotted Counter Pattern),这种方案巧妙地平衡了性能与并发需求。
核心设计思想
- 数据分片:为每个短链接创建多个计数器槽位(如100个),而不是单一的计数器。
- 随机更新:每次访问时随机选择一个槽位进行增量更新,分散写压力。
- 聚合统计:查询时通过SUM聚合各槽位值获取总访问量,避免直接COUNT原始访问记录。
技术实现细节
数据库表设计
CREATE TABLE short_url_visits_counts (
id INT AUTO_INCREMENT PRIMARY KEY,
short_url_id VARCHAR(255) NOT NULL,
potential_bot BOOLEAN NOT NULL,
slot_id INT NOT NULL,
count INT NOT NULL,
UNIQUE KEY (short_url_id, potential_bot, slot_id)
);
访问计数更新策略
针对不同数据库引擎,实现了差异化的UPSERT操作:
- MySQL/MariaDB:
INSERT INTO short_url_visits_counts
VALUES (:short_url_id, :potential_bot, RAND() * 100, 1)
ON DUPLICATE KEY UPDATE count = count + 1;
- PostgreSQL:
INSERT INTO short_url_visits_counts
VALUES (:short_url_id, :potential_bot, random() * 100, 1)
ON CONFLICT (short_url_id, potential_bot, slot_id) DO UPDATE
SET count = count + 1;
- SQLite/SQL Server:
- 先执行带锁的SELECT查询
- 根据结果决定INSERT新记录或UPDATE现有记录
应用层实现
通过Doctrine的事件订阅机制,在每次访问记录持久化前自动触发计数器更新:
class VisitCountSubscriber implements EventSubscriber {
public function getSubscribedEvents() {
return ['preFlush'];
}
public function preFlush(PreFlushEventArgs $args) {
// 实现细节省略...
}
}
方案优势分析
-
性能提升:
- SUM聚合替代COUNT,大幅减少I/O操作
- 避免了大表JOIN操作
-
并发优化:
- 100个槽位使写冲突概率降低99%
- 分散了数据库行锁压力
-
扩展性:
- 可灵活调整槽位数量平衡性能与准确性
- 支持区分正常访问与机器人访问统计
实施注意事项
- 数据迁移:需要为现有短链接初始化计数器数据
- 特性开关:保留回退到传统方案的开关
- 监控指标:需要监控新方案的准确性和性能表现
未来扩展方向
- 标签统计优化:将类似技术应用于标签系统的访问统计
- 动态槽位调整:根据访问量自动调整槽位数量
- 异步处理:考虑将计数器更新改为异步任务
这种创新的分槽计数器模式为Shlink提供了高性能、高并发的访问统计解决方案,值得在类似需要频繁计数更新的系统中借鉴应用。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868