基于Flask和Shelve的简易留言板开发实战
2025-07-01 18:10:13作者:魏侃纯Zoe
本文将详细介绍如何使用Python的Flask框架结合Shelve模块开发一个简易留言板系统。这个项目虽然简单,但涵盖了Web开发中的多个核心概念,非常适合初学者学习。
项目概述
这个留言板系统主要实现以下功能:
- 用户可以通过表单提交留言
- 系统会保存所有留言记录
- 留言按时间倒序排列显示
- 支持多行留言显示
- 提供美观的界面展示
技术栈选择
Flask框架
Flask是一个轻量级的Python Web框架,它简单易用但功能强大,非常适合快速开发小型Web应用。在本项目中,我们使用Flask处理HTTP请求、路由和模板渲染。
Shelve模块
Shelve是Python标准库中的一个简单持久化存储方案,它基于dbm模块,可以将Python对象序列化存储到文件中。相比数据库,Shelve更加轻量,适合小型应用的数据存储需求。
核心代码解析
应用初始化
application = Flask(__name__)
DATA_FILE = 'message.dat'
这里我们创建了Flask应用实例,并定义了数据存储文件名。
数据存储功能
def save_data(name, comment, create_at):
database = shelve.open(DATA_FILE)
if 'greeting_list' not in database:
greeting_list=[]
else:
greeting_list=database['greeting_list']
greeting_list.insert(0,{
'name':name,
'comment':comment,
'create_at':create_at,
})
database['greeting_list'] = greeting_list
database.close()
save_data函数负责将留言数据保存到Shelve文件中。这里有几个关键点:
- 使用
shelve.open打开数据文件 - 检查是否存在留言列表,不存在则初始化
- 将新留言插入到列表开头(实现最新留言显示在最前面)
- 更新并关闭数据库
数据加载功能
def load_data():
database = shelve.open(DATA_FILE)
greeting_list = database.get('greeting_list',[])
database.close()
return greeting_list
load_data函数从Shelve文件中读取所有留言数据,如果文件不存在或没有数据,则返回空列表。
路由处理
@application.route('/')
def index():
greeting_list = load_data()
return render_template('index.html',greeting_list=greeting_list)
@application.route('/post',methods=['POST'])
def post():
name = request.form.get('name')
comment = request.form.get('comments')
create_at = datetime.now()
save_data(name, comment, create_at)
return redirect('/')
这里定义了两个路由:
- 根路由
/:显示留言板首页,加载并显示所有留言 /post路由:处理表单提交,保存留言后重定向到首页
模板过滤器
@application.template_filter('nl2br')
def nl2br_filters(s):
return escape(s).replace('\n', Markup('</br>'))
@application.template_filter('datetime_fmt')
def datetime_fmt_filter(dt):
return dt.strftime('%Y/%m/%d %H:%M:%S')
定义了两个模板过滤器:
nl2br:将换行符转换为HTML的<br>标签,解决多行留言显示问题datetime_fmt:格式化日期时间显示
前端实现
HTML模板
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Message Board</title>
<link rel="stylesheet" href="../static/main.css">
</head>
<body>
<div id="main">
<h1>Message Board</h1>
<div id="form-area">
<p>please comment here:</p>
<form action="/post" method="POST">
<!-- 表单内容 -->
</form>
</div>
<div id="entries-area">
<h2>the comments history</h2>
<div class="entry">
{% for greeting in greeting_list %}
<h3>{{ greeting.name }} commented at {{ greeting.create_at|datetime_fmt }}</h3>
<p>{{ greeting.comment|nl2br }}</p>
{% endfor %}
</div>
</div>
</div>
</body>
</html>
模板使用了Jinja2语法,主要特点:
- 循环显示所有留言
- 使用自定义过滤器格式化时间和留言内容
- 包含表单用于提交新留言
CSS样式
body {
margin:0;
padding: 0;
color: #000E41;
background-color: #004080;
}
#form-area {
padding: 0.5em 2em;
background-color: #78B8F8;
}
#entries-area {
padding: 0.5em 2em;
background-color: #FFFFFF;
}
.entry p {
padding: 0.5em 1em;
background-color: #DBDBFF;
}
CSS样式表定义了留言板的整体外观,包括:
- 页面背景色
- 表单区域样式
- 留言显示区域样式
- 单个留言的样式
项目结构
完整的项目结构如下:
.
├── message.dat.db # Shelve数据文件
├── message_board.py # 主程序文件
├── static
│ └── main.css # 样式表文件
└── templates
└── index.html # HTML模板文件
运行与测试
启动服务
python message_board.py
服务默认运行在127.0.0.1:8000,开启debug模式方便开发调试。
测试留言
可以通过以下方式测试留言功能:
- 直接在网页表单提交
- 使用Python交互式环境导入数据:
import datetime
from message_board import save_data, load_data
# 添加测试留言
save_data('test', 'test_comment', datetime.datetime.now())
# 查看所有留言
print(load_data())
总结
这个简易留言板项目虽然功能简单,但涵盖了Web开发的多个重要方面:
- 后端路由处理
- 数据存储与读取
- 前端模板渲染
- 表单提交处理
- 简单的样式设计
对于初学者来说,这是一个很好的练手项目,可以在此基础上扩展更多功能,如:
- 用户认证
- 留言分页
- 留言编辑和删除
- 更复杂的数据验证
- 使用真正的数据库替代Shelve
通过这个项目,开发者可以快速掌握Flask框架的基本使用方法和Web开发的基本流程。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
581
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
366
仓颉编程语言运行时与标准库。
Cangjie
130
379
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205