LDAM-DRW 开源项目教程
2024-08-16 21:56:20作者:侯霆垣
项目介绍
LDAM-DRW(Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss)是一个用于处理不平衡数据集的开源项目。该项目在NeurIPS 2019上被提出,主要通过引入标签分布感知边际损失来改善模型在不平衡数据集上的性能。项目地址为:https://github.com/kaidic/LDAM-DRW。
项目快速启动
环境准备
首先,确保你的环境中安装了Python和必要的依赖库。你可以通过以下命令安装所需的Python库:
pip install torch torchvision
克隆项目
使用以下命令克隆LDAM-DRW项目到本地:
git clone https://github.com/kaidic/LDAM-DRW.git
cd LDAM-DRW
运行示例
项目中包含了一些示例脚本,你可以通过运行这些脚本来快速体验LDAM-DRW的效果。例如,运行CIFAR-10数据集的训练脚本:
python main.py --dataset cifar10 --imb_type exp --imb_factor 0.01 --loss_type LDAM --train_rule None --gpu 0
应用案例和最佳实践
应用案例
LDAM-DRW在多个不平衡数据集上都有良好的表现,特别是在图像分类任务中。例如,在CIFAR-10和CIFAR-100数据集上,通过调整不平衡因子,可以显著提高少数类别的识别准确率。
最佳实践
- 调整不平衡因子:根据数据集的不平衡程度,合理设置
--imb_factor参数。 - 选择合适的损失类型:根据任务需求,选择
LDAM或CE损失类型。 - 使用GPU加速:通过设置
--gpu参数,利用GPU加速训练过程。
典型生态项目
LDAM-DRW作为一个处理不平衡数据集的工具,可以与其他开源项目结合使用,以构建更强大的机器学习系统。以下是一些典型的生态项目:
- PyTorch:作为深度学习框架,PyTorch提供了强大的GPU支持和灵活的模型定义,是LDAM-DRW的基础。
- TensorFlow:虽然LDAM-DRW主要基于PyTorch,但TensorFlow用户也可以通过适当的转换,利用LDAM-DRW的思路来处理不平衡数据集。
- imbalanced-learn:这是一个专门处理不平衡数据集的Python库,可以与LDAM-DRW结合使用,进一步提高模型性能。
通过以上模块的介绍,希望你能快速上手并有效利用LDAM-DRW项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C033
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
343
Ascend Extension for PyTorch
Python
235
267
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
56
33
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669