TensorFlowOnSpark安装与使用指南
目录结构及介绍
TensorFlowOnSpark项目的目录结构如下所示:
tensorflow_on_spark/
├── bin/
│ ├── run_example.sh # 启动脚本示例
│ └── ...
├── conf/
│ ├── log4j.properties # 日志记录配置
│ └── ...
├── examples/
│ ├── mnist/ # MNIST数据集示例代码
│ │ ├── dataset.py # 数据处理脚本
│ │ └── tf_mnist.py # 使用TensorFlow训练MNIST模型
│ └── ...
├── jobs/
│ ├── job1/ # Job定义文件夹
│ │ ├── worker.py # 工作节点执行代码
│ │ └── parameter_server.py # 参数服务器代码
│ └── ...
├── lib/
│ ├── __init__.py
│ ├── data_feed.py # 提供DataFeed类用于读取HDFS上的TFRecord文件
│ ├── launcher.py # Launcher模块用于启动TensorFlowOnSpark任务
│ └── ...
└── src/
├── org/
│ ├── apache/
│ │ └── spark/
│ │ └── tensorflow/
│ │ └── JavaAPI.java # Java API实现
│ └── ...
bin/目录
bin/目录下存放着各种脚本文件,主要用于启动或停止TensorFlowOnSpark集群。例如run_example.sh是运行一个基本的TensorFlowOnSpark例子的脚本。
conf/目录
conf/目录存储了日志记录和其他系统级配置文件,如log4j.properties用来控制应用的日志记录行为。
examples/目录
examples/目录包含了多个TensorFlowOnSpark示例代码,其中mnist/目录下的tf_mnist.py示例展示了如何在分布式环境中使用TensorFlow进行图像分类的任务。
jobs/目录
jobs/目录中放置了实际要执行的工作负载,如训练任务的Python脚本,这些脚本会在Spark集群的工作节点上运行。一般包括工作节点(worker)代码和参数服务(PS)代码。
lib/目录
lib/目录内包含了TensorFlowOnSpark库的核心组件,比如data_feed.py提供了读取HDFS中的TFRecord文件的功能。
src/目录
src/目录通常存放源代码,对于Java API的支持,可能在这个目录里有相应的实现文件。
启动文件介绍
启动脚本run_example.sh位于bin/目录下,这是个Shell脚本,用于自动化启动一个TensorFlowOnSpark实例。该脚本通过调用launcher.py来配置并运行一个基于MNIST数据集的简单深度学习模型训练任务。
$ bin/run_example.sh
这个命令将执行一系列操作,包括从本地文件系统或HDFS加载数据集,创建并配置SparkSession,设置TensorFlowOnSpark的相关参数(如集群模式、工人的数量等),然后启动计算流程。
配置文件介绍
主要的配置文件是conf/log4j.properties,它控制着整个程序的日志级别和输出方式。
例如,在log4j.properties中可以找到以下配置项:
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE} %5p %c{1}:%L - %m%n
...
这些配置决定了哪些级别的消息应该被记录以及它们应该如何格式化。
此外,还有一些环境变量和参数是在启动脚本中传递给launcher.py的,例如:
--cluster_size: 指定Spark集群上的worker数。--executor_cores: 每个工作进程使用的CPU核心数目。--executor_memory: 分配给每个工作进程的内存大小。--num_ps: 参数服务器的数量。
这些参数可以通过修改启动脚本来动态调整,以适应不同的硬件资源和应用场景需求。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00