EasyR1项目训练恢复功能解析与正确使用方法
2025-07-04 08:05:49作者:史锋燃Gardner
在深度学习模型训练过程中,训练中断后恢复训练是一个常见需求。EasyR1项目作为一款强化学习框架,提供了训练恢复功能,但在使用过程中可能会出现一些显示问题,需要开发者特别注意。
训练恢复的工作原理
EasyR1项目的训练恢复机制基于检查点(checkpoint)系统。当训练过程中保存检查点时,系统会记录模型参数、优化器状态、训练步数等关键信息。恢复训练时,系统会从检查点加载这些信息,确保训练能够从上次中断的位置继续。
常见问题现象
部分用户反馈在恢复训练时遇到了终端进度条显示不正确的问题。具体表现为:
- 终端进度条从0开始计数
- 但Wandb等监控工具显示正确的恢复起始步数
这种现象通常只是显示问题,实际训练过程是从正确位置恢复的。终端进度条可能因为某些原因没有正确初始化显示值,但训练本身是正常的。
正确的训练恢复方法
EasyR1项目提供了两种恢复训练的方式:
1. 官方推荐方法(直接加载检查点)
在配置文件中指定load_checkpoint_path参数,直接指向检查点目录:
load_checkpoint_path: xxxx/global_step_10
这种方法最简单直接,系统会自动处理所有恢复逻辑。
2. 模型转换方法(适用于特殊需求)
如果需要先将检查点转换为HuggingFace格式再恢复,可以按以下步骤操作:
- 使用模型合并脚本转换检查点:
python3 scripts/model_merger.py --local_dir checkpoints/easy_r1/exp_name/global_step_1/actor
-
转换完成后,会在指定目录下生成HuggingFace格式的模型文件(model-xx-of-xx.safetensors)
-
修改训练脚本中的MODEL_PATH参数,指向转换后的HuggingFace格式模型目录
训练恢复验证方法
为确保训练确实从正确位置恢复,建议通过以下方式验证:
- 监控Wandb日志中的训练步数
- 检查
./wandb/latest-run/files/output.log文件中的生成和奖励分数 - 观察损失函数曲线是否平滑过渡(没有突然变化)
技术建议
- 对于大多数情况,直接使用
load_checkpoint_path参数是最可靠的方法 - 终端进度条显示问题通常不影响实际训练,可以忽略
- 定期保存检查点(如每100-1000步)可以减少中断带来的损失
- 恢复训练后,建议先观察几个batch的训练情况,确认一切正常
通过正确理解和使用EasyR1的训练恢复功能,开发者可以更高效地进行模型训练,有效应对训练中断的情况。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Launch4j中文版:Java应用程序打包成EXE的终极解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.61 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
227
306
Ascend Extension for PyTorch
Python
116
149
暂无简介
Dart
578
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
605
182
仓颉编译器源码及 cjdb 调试工具。
C++
121
287
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
46
77
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.13 K