EasyR1项目训练恢复功能解析与正确使用方法
2025-07-04 23:26:09作者:史锋燃Gardner
在深度学习模型训练过程中,训练中断后恢复训练是一个常见需求。EasyR1项目作为一款强化学习框架,提供了训练恢复功能,但在使用过程中可能会出现一些显示问题,需要开发者特别注意。
训练恢复的工作原理
EasyR1项目的训练恢复机制基于检查点(checkpoint)系统。当训练过程中保存检查点时,系统会记录模型参数、优化器状态、训练步数等关键信息。恢复训练时,系统会从检查点加载这些信息,确保训练能够从上次中断的位置继续。
常见问题现象
部分用户反馈在恢复训练时遇到了终端进度条显示不正确的问题。具体表现为:
- 终端进度条从0开始计数
- 但Wandb等监控工具显示正确的恢复起始步数
这种现象通常只是显示问题,实际训练过程是从正确位置恢复的。终端进度条可能因为某些原因没有正确初始化显示值,但训练本身是正常的。
正确的训练恢复方法
EasyR1项目提供了两种恢复训练的方式:
1. 官方推荐方法(直接加载检查点)
在配置文件中指定load_checkpoint_path参数,直接指向检查点目录:
load_checkpoint_path: xxxx/global_step_10
这种方法最简单直接,系统会自动处理所有恢复逻辑。
2. 模型转换方法(适用于特殊需求)
如果需要先将检查点转换为HuggingFace格式再恢复,可以按以下步骤操作:
- 使用模型合并脚本转换检查点:
python3 scripts/model_merger.py --local_dir checkpoints/easy_r1/exp_name/global_step_1/actor
-
转换完成后,会在指定目录下生成HuggingFace格式的模型文件(model-xx-of-xx.safetensors)
-
修改训练脚本中的MODEL_PATH参数,指向转换后的HuggingFace格式模型目录
训练恢复验证方法
为确保训练确实从正确位置恢复,建议通过以下方式验证:
- 监控Wandb日志中的训练步数
- 检查
./wandb/latest-run/files/output.log文件中的生成和奖励分数 - 观察损失函数曲线是否平滑过渡(没有突然变化)
技术建议
- 对于大多数情况,直接使用
load_checkpoint_path参数是最可靠的方法 - 终端进度条显示问题通常不影响实际训练,可以忽略
- 定期保存检查点(如每100-1000步)可以减少中断带来的损失
- 恢复训练后,建议先观察几个batch的训练情况,确认一切正常
通过正确理解和使用EasyR1的训练恢复功能,开发者可以更高效地进行模型训练,有效应对训练中断的情况。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178