gql 4.0.0 beta版本发布:GraphQL客户端重大升级
项目简介
gql是Python生态中一个功能强大的GraphQL客户端库,它提供了与GraphQL服务器交互的完整解决方案。作为一个全功能的GraphQL客户端,gql支持查询、变更、订阅等所有GraphQL操作类型,并提供了多种传输层实现,包括HTTP、WebSocket等。该项目特别注重对异步编程的支持,与Python的asyncio生态深度集成。
4.0.0 beta版本核心变更
请求传输机制重构
本次版本最重大的变化是彻底重构了请求传输机制,引入了GraphQLRequest对象作为核心数据结构。在之前的版本中,开发者需要分别传递文档节点(DocumentNode)、变量值和操作名称三个参数。现在,这三个组件被封装在一个GraphQLRequest对象中,使得API更加整洁和一致。
这种改变带来了几个显著优势:
- 代码组织更加清晰,相关参数被自然地分组在一起
- 减少了方法签名长度,降低了API复杂度
- 为批量请求等高级功能提供了更好的基础支持
文件上传接口改进
文件上传功能得到了显著改进,引入了专门的FileVar类来处理文件上传。虽然旧的上传方式仍然可用,但已被标记为废弃。新的FileVar类提供了更明确和类型安全的方式来处理文件上传,减少了潜在的错误。
订阅任务取消处理优化
在订阅任务取消时的异常处理得到了改进。之前版本会吞没asyncio.CancelledError异常,现在这些异常会正常抛出,开发者需要自行处理这些取消异常。这种改变使得取消行为更加符合Python异步编程的预期。
连接失败异常封装
现在gql会捕获依赖库抛出的异常,并将其封装为TransportConnectionFailed异常。这种统一的异常处理机制使得错误处理更加一致和可靠,开发者可以更容易地识别和处理连接问题。
重要新功能:批量请求支持
4.0.0版本引入了完整的批量请求支持,这是本次更新的一个重要亮点。批量请求允许将多个GraphQL操作合并为单个HTTP请求发送到服务器,可以显著减少网络开销和提高性能。
新版本提供了两种批处理方式:
- 显式批处理:通过
execute_batch方法手动执行批量操作 - 自动批处理:框架自动将短时间内发出的多个请求合并为批量请求
这种批处理机制不仅适用于异步传输层,也适用于同步传输层,为不同类型的应用场景提供了灵活性。
其他改进
日志记录级别现在统一设置为DEBUG,为开发者提供了更详细的调试信息。同时,内省查询现在默认会请求已弃用的输入字段,确保向后兼容性。
迁移建议
对于现有项目升级到4.0.0版本,开发者需要注意以下几点:
- 所有使用
gql或dsl_gql的地方需要检查返回值处理,现在返回的是GraphQLRequest而非DocumentNode - 文件上传代码应迁移到使用新的
FileVar类 - 订阅代码需要添加对
asyncio.CancelledError的处理 - 异常处理代码可能需要调整以适应新的异常封装机制
这个beta版本标志着gql库的一个重要里程碑,为GraphQL客户端开发提供了更强大、更一致的基础设施。虽然包含了一些破坏性变更,但这些改进为未来的功能扩展和性能优化奠定了坚实基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00