AWS Deep Learning Containers发布TensorFlow 2.18.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化的深度学习容器镜像,这些镜像预装了流行的深度学习框架、库和工具,可以帮助开发者快速部署机器学习工作负载。DLC镜像针对AWS基础设施进行了性能优化,并支持多种计算实例类型。
本次发布的v1.3版本主要提供了TensorFlow 2.18.0推理环境的容器镜像,支持Python 3.10运行环境。这些镜像分为CPU和GPU两个版本,均基于Ubuntu 20.04操作系统构建。
CPU版本镜像特性
CPU版本的TensorFlow推理镜像(tensorflow-inference:2.18.0-cpu-py310)包含以下关键组件:
- TensorFlow Serving API 2.18.0:用于高性能模型服务的核心组件
- Python 3.10环境:最新的Python稳定版本
- 基础工具链:包括Cython 0.29.37、protobuf 4.25.6等编译工具
- AWS开发工具:boto3 1.36.23、awscli 1.37.23等AWS SDK
- 系统依赖:包含libgcc和libstdc++等基础C++运行库
该镜像特别适合不需要GPU加速的推理场景,或者开发测试环境使用。
GPU版本镜像特性
GPU版本的TensorFlow推理镜像(tensorflow-inference:2.18.0-gpu-py310-cu122)在CPU版本基础上增加了对NVIDIA GPU的支持:
- CUDA 12.2工具链:完整的GPU计算环境
- cuDNN 8:深度神经网络加速库
- NCCL 2:多GPU通信库
- TensorFlow Serving API GPU 2.18.0:支持GPU加速的模型服务组件
GPU版本镜像针对需要高性能推理的场景设计,可以充分利用NVIDIA GPU的并行计算能力,显著提升模型推理速度。
技术细节与优化
这两个镜像都采用了Ubuntu 20.04作为基础操作系统,确保了系统稳定性和安全性。镜像中预装了常用的开发工具如emacs,方便开发者进行调试和配置。
在Python包管理方面,镜像使用了较新的setuptools 75.8.0和packaging 24.2,确保依赖解析的准确性。同时包含了requests 2.32.3等常用HTTP客户端库,方便与外部服务交互。
值得注意的是,这些镜像已经针对AWS SageMaker服务进行了优化,可以直接在SageMaker环境中使用,简化了机器学习模型的部署流程。
适用场景
AWS Deep Learning Containers的这些TensorFlow推理镜像特别适合以下场景:
- 生产环境模型服务部署
- 大规模批量推理任务
- 需要快速原型开发的机器学习项目
- 需要与AWS服务深度集成的AI应用
通过使用这些预构建的容器镜像,开发者可以避免复杂的环境配置过程,专注于模型开发和业务逻辑实现,显著提高工作效率。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









