AWS Deep Learning Containers发布TensorFlow 2.18.0推理镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化的深度学习容器镜像,这些镜像预装了流行的深度学习框架、库和工具,可以帮助开发者快速部署机器学习工作负载。DLC镜像针对AWS基础设施进行了性能优化,并支持多种计算实例类型。
本次发布的v1.3版本主要提供了TensorFlow 2.18.0推理环境的容器镜像,支持Python 3.10运行环境。这些镜像分为CPU和GPU两个版本,均基于Ubuntu 20.04操作系统构建。
CPU版本镜像特性
CPU版本的TensorFlow推理镜像(tensorflow-inference:2.18.0-cpu-py310)包含以下关键组件:
- TensorFlow Serving API 2.18.0:用于高性能模型服务的核心组件
- Python 3.10环境:最新的Python稳定版本
- 基础工具链:包括Cython 0.29.37、protobuf 4.25.6等编译工具
- AWS开发工具:boto3 1.36.23、awscli 1.37.23等AWS SDK
- 系统依赖:包含libgcc和libstdc++等基础C++运行库
该镜像特别适合不需要GPU加速的推理场景,或者开发测试环境使用。
GPU版本镜像特性
GPU版本的TensorFlow推理镜像(tensorflow-inference:2.18.0-gpu-py310-cu122)在CPU版本基础上增加了对NVIDIA GPU的支持:
- CUDA 12.2工具链:完整的GPU计算环境
- cuDNN 8:深度神经网络加速库
- NCCL 2:多GPU通信库
- TensorFlow Serving API GPU 2.18.0:支持GPU加速的模型服务组件
GPU版本镜像针对需要高性能推理的场景设计,可以充分利用NVIDIA GPU的并行计算能力,显著提升模型推理速度。
技术细节与优化
这两个镜像都采用了Ubuntu 20.04作为基础操作系统,确保了系统稳定性和安全性。镜像中预装了常用的开发工具如emacs,方便开发者进行调试和配置。
在Python包管理方面,镜像使用了较新的setuptools 75.8.0和packaging 24.2,确保依赖解析的准确性。同时包含了requests 2.32.3等常用HTTP客户端库,方便与外部服务交互。
值得注意的是,这些镜像已经针对AWS SageMaker服务进行了优化,可以直接在SageMaker环境中使用,简化了机器学习模型的部署流程。
适用场景
AWS Deep Learning Containers的这些TensorFlow推理镜像特别适合以下场景:
- 生产环境模型服务部署
- 大规模批量推理任务
- 需要快速原型开发的机器学习项目
- 需要与AWS服务深度集成的AI应用
通过使用这些预构建的容器镜像,开发者可以避免复杂的环境配置过程,专注于模型开发和业务逻辑实现,显著提高工作效率。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00