Manticore Search 7.4.6版本发布:性能优化与Kibana集成
Manticore Search是一个开源的分布式搜索和数据分析引擎,专为高性能、高可用性的搜索场景设计。它提供了强大的全文搜索能力,支持SQL和HTTP接口,能够处理海量数据的实时索引和查询。作为Elasticsearch的替代方案,Manticore Search在性能方面有着显著优势,特别是在高负载环境下。
主要特性更新
本次发布的7.4.6版本带来了与Kibana的集成支持,这一功能将为用户提供更加强大的数据可视化能力。Kibana作为业界领先的数据可视化工具,与Manticore Search的结合使得用户能够更加直观地分析和探索搜索数据,构建丰富的仪表盘和可视化报表。
性能优化改进
在性能方面,7.4.6版本进行了多方面的优化:
-
针对连接查询(join)的批处理机制进行了性能优化,显著提升了复杂查询的执行效率。这对于需要跨多个表进行关联查询的业务场景尤为重要。
-
直方图(histogram)中的EstimateValues函数得到了优化,提高了数据统计和分析操作的性能。
-
列式存储引擎中实现了块数据复用优化,当创建包含多个值的过滤器时能够更高效地处理数据。同时增加了属性元数据中的最小/最大值信息,实现了基于这些值的预过滤,进一步提升了查询性能。
重要问题修复
7.4.6版本修复了多个关键问题:
-
修复了在arm64和x86_64架构间浮点数精度不一致的问题,确保了跨平台计算结果的一致性。
-
解决了在SELECT...JOIN查询中使用avg()函数可能导致结果不正确的问题,保证了统计计算的准确性。
-
修正了IN(...)操作符可能产生错误结果的情况,增强了查询的可靠性。
-
修复了7.0.0版本中设置max_iops/max_iosize参数可能导致索引性能下降的问题,恢复了预期的索引吞吐量。
-
解决了连接查询缓存中的内存管理问题,提高了系统长期运行的稳定性。
-
修正了ATTACH TABLE命令的处理问题,确保了表附加操作的正常执行。
其他改进
-
增加了对Boost 1.87.0库的支持,保持了与最新C++生态系统的兼容性。
-
修复了JSON连接查询中查询选项处理的问题,提升了API的稳定性。
-
统一了错误消息的格式,改善了开发者的调试体验。
-
解决了磁盘块刷新超时设置不生效的问题,增强了系统配置的灵活性。
-
修复了大ID批量替换后可能出现重复条目的情况,确保了数据的一致性。
-
修正了包含单个NOT运算符和表达式排序器的全文查询可能导致服务异常的问题,提高了系统的健壮性。
-
修复了CJSON库中的潜在问题,增强了系统的安全性。
Manticore Search 7.4.6版本的这些改进和修复,进一步提升了系统的性能、稳定性和功能性,为用户提供了更加可靠和高效的搜索体验。特别是Kibana集成的加入,使得Manticore Search在数据分析可视化方面的能力得到了显著增强,为构建完整的数据搜索和分析解决方案提供了更好的支持。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00