Manticore Search 7.4.6版本发布:性能优化与Kibana集成
Manticore Search是一个开源的分布式搜索和数据分析引擎,专为高性能、高可用性的搜索场景设计。它提供了强大的全文搜索能力,支持SQL和HTTP接口,能够处理海量数据的实时索引和查询。作为Elasticsearch的替代方案,Manticore Search在性能方面有着显著优势,特别是在高负载环境下。
主要特性更新
本次发布的7.4.6版本带来了与Kibana的集成支持,这一功能将为用户提供更加强大的数据可视化能力。Kibana作为业界领先的数据可视化工具,与Manticore Search的结合使得用户能够更加直观地分析和探索搜索数据,构建丰富的仪表盘和可视化报表。
性能优化改进
在性能方面,7.4.6版本进行了多方面的优化:
-
针对连接查询(join)的批处理机制进行了性能优化,显著提升了复杂查询的执行效率。这对于需要跨多个表进行关联查询的业务场景尤为重要。
-
直方图(histogram)中的EstimateValues函数得到了优化,提高了数据统计和分析操作的性能。
-
列式存储引擎中实现了块数据复用优化,当创建包含多个值的过滤器时能够更高效地处理数据。同时增加了属性元数据中的最小/最大值信息,实现了基于这些值的预过滤,进一步提升了查询性能。
重要问题修复
7.4.6版本修复了多个关键问题:
-
修复了在arm64和x86_64架构间浮点数精度不一致的问题,确保了跨平台计算结果的一致性。
-
解决了在SELECT...JOIN查询中使用avg()函数可能导致结果不正确的问题,保证了统计计算的准确性。
-
修正了IN(...)操作符可能产生错误结果的情况,增强了查询的可靠性。
-
修复了7.0.0版本中设置max_iops/max_iosize参数可能导致索引性能下降的问题,恢复了预期的索引吞吐量。
-
解决了连接查询缓存中的内存管理问题,提高了系统长期运行的稳定性。
-
修正了ATTACH TABLE命令的处理问题,确保了表附加操作的正常执行。
其他改进
-
增加了对Boost 1.87.0库的支持,保持了与最新C++生态系统的兼容性。
-
修复了JSON连接查询中查询选项处理的问题,提升了API的稳定性。
-
统一了错误消息的格式,改善了开发者的调试体验。
-
解决了磁盘块刷新超时设置不生效的问题,增强了系统配置的灵活性。
-
修复了大ID批量替换后可能出现重复条目的情况,确保了数据的一致性。
-
修正了包含单个NOT运算符和表达式排序器的全文查询可能导致服务异常的问题,提高了系统的健壮性。
-
修复了CJSON库中的潜在问题,增强了系统的安全性。
Manticore Search 7.4.6版本的这些改进和修复,进一步提升了系统的性能、稳定性和功能性,为用户提供了更加可靠和高效的搜索体验。特别是Kibana集成的加入,使得Manticore Search在数据分析可视化方面的能力得到了显著增强,为构建完整的数据搜索和分析解决方案提供了更好的支持。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00