aiogram中使用自定义表情的技术实现解析
2025-06-09 19:30:45作者:俞予舒Fleming
在即时通讯机器人开发中,使用aiogram框架处理自定义表情(emoji)是一个常见的需求。本文将深入探讨如何在aiogram中正确实现自定义表情的发送功能。
自定义表情的工作原理
即时通讯平台的自定义表情系统允许用户使用特殊的表情符号,这些表情通常需要高级订阅或特定群组的提升状态才能使用。与普通Unicode表情不同,自定义表情实际上是通过唯一的emoji_id来标识的。
核心实现方法
要在aiogram消息中正确显示自定义表情,开发者需要使用HTML格式的消息并遵循特定的标记语法:
message_text = f'这是自定义表情:<tg-emoji emoji-id="{custom_emoji_id}">😎</tg-emoji>'
await message.answer(message_text, parse_mode="HTML")
其中关键点包括:
- 必须使用HTML解析模式(parse_mode="HTML")
- 使用
<tg-emoji>标签包裹表情 - 提供正确的emoji_id参数
- 在标签内部放置一个基础表情作为回退显示
获取自定义表情ID
当用户发送包含自定义表情的消息时,可以通过消息实体(entities)来提取emoji_id:
if message.entities:
for entity in message.entities:
if entity.type == 'custom_emoji':
custom_emoji_id = entity.custom_emoji_id
break
注意事项
-
权限要求:发送自定义表情通常需要机器人拥有用户名(如@BotName)或所在群组达到足够的提升等级
-
回退机制:当接收方没有权限查看自定义表情时,将显示标签内的基础表情
-
格式验证:确保消息文本使用正确的HTML格式,错误的标记可能导致表情无法正常显示
-
状态管理:在实际应用中,建议使用FSM(有限状态机)来管理用户的表情设置流程
完整实现示例
以下是一个完整的aiogram处理流程示例:
@dp.message(Command('setemoji'))
async def set_emoji_command(message: Message, state: FSMContext):
await message.answer("请发送您想使用的自定义表情")
await state.set_state('waiting_for_emoji')
@dp.message(StateFilter('waiting_for_emoji'))
async def process_emoji(message: Message, state: FSMContext):
custom_emoji_id = None
fallback_emoji = "❓"
if message.entities:
for entity in message.entities:
if entity.type == 'custom_emoji':
custom_emoji_id = entity.custom_emoji_id
fallback_emoji = message.text[entity.offset:entity.offset+entity.length]
break
if custom_emoji_id:
await state.update_data(emoji_id=custom_emoji_id, fallback=fallback_emoji)
response = f"成功设置表情: <tg-emoji emoji-id='{custom_emoji_id}'>{fallback_emoji}</tg-emoji>"
await message.answer(response, parse_mode="HTML")
else:
await message.answer("未检测到自定义表情,请重试")
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896