OpenAI Agents Python项目中Mapping类型输入导致函数工具报错问题解析
2025-05-25 19:01:34作者:薛曦旖Francesca
问题背景
在OpenAI Agents Python项目的使用过程中,开发者发现当为Agent提供一个输入参数类型为Mapping或dict的function_tool时,运行Agent会返回HTTP 400错误,错误类型为invalid_function_parameters。这个问题的核心在于JSON Schema验证的严格模式下对Mapping类型的处理方式。
问题复现
当开发者尝试定义一个接受Mapping类型参数的函数工具时:
@function_tool
def foo(x: Mapping[str,str]) -> str:
return 'bar'
foo_agent = Agent(name='Foo Agent', tools=[foo])
await Runner.run(foo_agent, input='foo')
系统会返回如下错误信息:
Error getting response: Error code: 400
{
'error': {
'message': "Invalid schema for function 'foo': In context=(), 'required' is required to be supplied and to be an array including every key in properties. Extra required key 'x' supplied.",
'type': 'invalid_request_error',
'param': 'tools[0].parameters',
'code': 'invalid_function_parameters'
}
}
技术分析
JSON Schema验证问题
通过检查生成的JSON Schema(通过foo.params_json_schema查看),我们可以看到:
{
"properties": {
"x": {
"additionalProperties": {"type": "string"},
"title": "X",
"type": "object"
}
},
"required": ["x"],
"title": "foo_args",
"type": "object",
"additionalProperties": false
}
虽然这个Schema看起来是有效的,但在OpenAI的严格模式验证下会失败。主要原因在于:
- 结构化输出的限制:OpenAI的结构化输出功能需要保证生成的JSON符合特定的约束条件
- 无限键值问题:对于Mapping类型,系统无法确定应该生成多少个键值对,导致验证失败
解决方案
开发团队提供了两种解决方案:
- 使用非严格模式:通过设置strict=False来绕过严格验证
@function_tool(strict=False)
def foo(x: Mapping[str,str]) -> str:
return 'bar'
- 使用明确的Pydantic模型:推荐使用定义明确的Pydantic模型替代泛型Mapping
class MyObject(BaseModel):
parameter_name: str
@function_tool
def foo(x: MyObject) -> str:
return 'bar'
最佳实践建议
对于需要处理类似字典结构数据的场景,建议:
- 优先使用明确的Pydantic模型:这能提供更好的类型提示和文档支持
- 考虑数据结构的实际需求:例如,如果需要处理类似pandas Series的数据,可以定义如下的模型结构:
class DataPoint(BaseModel):
x: str
y: float
class DataSeries(BaseModel):
title: str
data: list[DataPoint]
- 仅在必要时使用非严格模式:strict=False虽然能解决问题,但会降低类型安全性
技术背景
这个问题的根源在于OpenAI API对结构化输出的严格要求。结构化输出功能需要确保生成的JSON数据符合可预测的模式,而泛型的Mapping类型无法提供足够的约束信息。Pydantic模型则能明确定义每个字段的类型和约束,因此是更安全的选择。
结论
在OpenAI Agents Python项目中使用函数工具时,开发者应当注意输入参数的类型选择。对于需要字典式输入的场景,推荐使用明确定义的Pydantic模型而非泛型的Mapping类型,这既能保证类型安全,又能获得更好的开发体验。项目团队已经通过添加运行时验证来更早地捕获这类问题,帮助开发者更快地识别和解决问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135