OpenAI Agents Python项目中Mapping类型输入导致函数工具报错问题解析
2025-05-25 08:27:51作者:薛曦旖Francesca
问题背景
在OpenAI Agents Python项目的使用过程中,开发者发现当为Agent提供一个输入参数类型为Mapping或dict的function_tool时,运行Agent会返回HTTP 400错误,错误类型为invalid_function_parameters。这个问题的核心在于JSON Schema验证的严格模式下对Mapping类型的处理方式。
问题复现
当开发者尝试定义一个接受Mapping类型参数的函数工具时:
@function_tool
def foo(x: Mapping[str,str]) -> str:
return 'bar'
foo_agent = Agent(name='Foo Agent', tools=[foo])
await Runner.run(foo_agent, input='foo')
系统会返回如下错误信息:
Error getting response: Error code: 400
{
'error': {
'message': "Invalid schema for function 'foo': In context=(), 'required' is required to be supplied and to be an array including every key in properties. Extra required key 'x' supplied.",
'type': 'invalid_request_error',
'param': 'tools[0].parameters',
'code': 'invalid_function_parameters'
}
}
技术分析
JSON Schema验证问题
通过检查生成的JSON Schema(通过foo.params_json_schema查看),我们可以看到:
{
"properties": {
"x": {
"additionalProperties": {"type": "string"},
"title": "X",
"type": "object"
}
},
"required": ["x"],
"title": "foo_args",
"type": "object",
"additionalProperties": false
}
虽然这个Schema看起来是有效的,但在OpenAI的严格模式验证下会失败。主要原因在于:
- 结构化输出的限制:OpenAI的结构化输出功能需要保证生成的JSON符合特定的约束条件
- 无限键值问题:对于Mapping类型,系统无法确定应该生成多少个键值对,导致验证失败
解决方案
开发团队提供了两种解决方案:
- 使用非严格模式:通过设置strict=False来绕过严格验证
@function_tool(strict=False)
def foo(x: Mapping[str,str]) -> str:
return 'bar'
- 使用明确的Pydantic模型:推荐使用定义明确的Pydantic模型替代泛型Mapping
class MyObject(BaseModel):
parameter_name: str
@function_tool
def foo(x: MyObject) -> str:
return 'bar'
最佳实践建议
对于需要处理类似字典结构数据的场景,建议:
- 优先使用明确的Pydantic模型:这能提供更好的类型提示和文档支持
- 考虑数据结构的实际需求:例如,如果需要处理类似pandas Series的数据,可以定义如下的模型结构:
class DataPoint(BaseModel):
x: str
y: float
class DataSeries(BaseModel):
title: str
data: list[DataPoint]
- 仅在必要时使用非严格模式:strict=False虽然能解决问题,但会降低类型安全性
技术背景
这个问题的根源在于OpenAI API对结构化输出的严格要求。结构化输出功能需要确保生成的JSON数据符合可预测的模式,而泛型的Mapping类型无法提供足够的约束信息。Pydantic模型则能明确定义每个字段的类型和约束,因此是更安全的选择。
结论
在OpenAI Agents Python项目中使用函数工具时,开发者应当注意输入参数的类型选择。对于需要字典式输入的场景,推荐使用明确定义的Pydantic模型而非泛型的Mapping类型,这既能保证类型安全,又能获得更好的开发体验。项目团队已经通过添加运行时验证来更早地捕获这类问题,帮助开发者更快地识别和解决问题。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
580
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
359
仓颉编程语言运行时与标准库。
Cangjie
130
372
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
184
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205