Apache Shenyu网关JWT插件性能优化实践
2025-05-27 16:47:17作者:秋泉律Samson
背景概述
在微服务架构中,API网关作为系统入口承担着重要的安全认证职责。Apache Shenyu作为一款高性能的API网关,其JWT插件在实际生产环境中可能会遇到性能瓶颈问题。本文将通过一个实际案例,深入分析JWT插件对网关性能的影响及优化方案。
问题现象
某企业在生产环境中部署了两套Apache Shenyu网关集群,具体配置如下:
- 硬件配置:8核CPU/16GB内存
- 网关01:启用mock插件
- 网关02:使用divide插件代理转发请求至网关01
性能测试结果发现:
- 直接压测网关01的mock接口,吞吐量可达5万QPS
- 通过网关02转发至网关01,吞吐量降至2.5万QPS
- 在网关02启用JWT插件后,吞吐量骤降至2000QPS左右
问题分析
通过性能测试数据对比,可以明显看出JWT插件的验证过程对网关性能产生了显著影响。JWT验证主要涉及以下性能消耗点:
- 签名验证开销:每次请求都需要对JWT令牌进行签名验证,涉及非对称加密运算
- 解析开销:需要解析JWT令牌的header、payload和signature三部分
- 时效验证:检查令牌的expiration时间等声明
- 网络延迟:如果配置了远程公钥获取,还会引入网络IO开销
优化方案
方案一:缓存验证结果
原始方案中通过修改org.apache.shenyu.plugin.jwt.JwtPlugin类的checkAuthorization方法,引入缓存机制存储JWT验证结果。这种优化使吞吐量从2000QPS提升至14000QPS,效果显著。
缓存实现要点:
- 使用Guava Cache或Caffeine等高性能缓存
- 设置合理的过期时间(略短于JWT过期时间)
- 注意缓存键设计(通常使用JWT令牌本身作为key)
方案二:调整Netty参数
根据Apache Shenyu官方优化建议,可以调整以下Netty参数提升整体性能:
- 工作线程数配置:根据CPU核心数合理设置
- 内存分配策略:使用池化内存分配器
- TCP参数优化:如SO_BACKLOG、SO_REUSEADDR等
方案三:JWT插件优化建议
- 异步验证:将JWT验证过程改为异步非阻塞方式
- 批量验证:对批量请求合并验证(需考虑业务场景适用性)
- 本地公钥缓存:避免每次远程获取公钥
- 轻量级算法:优先使用HS256等计算量较小的算法
实施建议
- 性能基准测试:优化前后都应进行全面的性能测试
- 监控指标:关注CPU使用率、内存消耗、GC情况等
- 渐进式发布:优化方案应先在小规模环境验证
- 熔断降级:为JWT验证添加熔断机制,防止雪崩效应
总结
JWT认证作为API安全的重要环节,其性能优化需要平衡安全性与系统吞吐量。通过缓存验证结果、优化Netty配置等方案,可以显著提升Apache Shenyu网关在启用JWT插件时的性能表现。在实际生产环境中,建议根据具体业务场景选择合适的优化组合方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355