Apache Shenyu网关JWT插件性能优化实践
2025-05-27 10:36:04作者:秋泉律Samson
背景概述
在微服务架构中,API网关作为系统入口承担着重要的安全认证职责。Apache Shenyu作为一款高性能的API网关,其JWT插件在实际生产环境中可能会遇到性能瓶颈问题。本文将通过一个实际案例,深入分析JWT插件对网关性能的影响及优化方案。
问题现象
某企业在生产环境中部署了两套Apache Shenyu网关集群,具体配置如下:
- 硬件配置:8核CPU/16GB内存
- 网关01:启用mock插件
- 网关02:使用divide插件代理转发请求至网关01
性能测试结果发现:
- 直接压测网关01的mock接口,吞吐量可达5万QPS
- 通过网关02转发至网关01,吞吐量降至2.5万QPS
- 在网关02启用JWT插件后,吞吐量骤降至2000QPS左右
问题分析
通过性能测试数据对比,可以明显看出JWT插件的验证过程对网关性能产生了显著影响。JWT验证主要涉及以下性能消耗点:
- 签名验证开销:每次请求都需要对JWT令牌进行签名验证,涉及非对称加密运算
- 解析开销:需要解析JWT令牌的header、payload和signature三部分
- 时效验证:检查令牌的expiration时间等声明
- 网络延迟:如果配置了远程公钥获取,还会引入网络IO开销
优化方案
方案一:缓存验证结果
原始方案中通过修改org.apache.shenyu.plugin.jwt.JwtPlugin
类的checkAuthorization
方法,引入缓存机制存储JWT验证结果。这种优化使吞吐量从2000QPS提升至14000QPS,效果显著。
缓存实现要点:
- 使用Guava Cache或Caffeine等高性能缓存
- 设置合理的过期时间(略短于JWT过期时间)
- 注意缓存键设计(通常使用JWT令牌本身作为key)
方案二:调整Netty参数
根据Apache Shenyu官方优化建议,可以调整以下Netty参数提升整体性能:
- 工作线程数配置:根据CPU核心数合理设置
- 内存分配策略:使用池化内存分配器
- TCP参数优化:如SO_BACKLOG、SO_REUSEADDR等
方案三:JWT插件优化建议
- 异步验证:将JWT验证过程改为异步非阻塞方式
- 批量验证:对批量请求合并验证(需考虑业务场景适用性)
- 本地公钥缓存:避免每次远程获取公钥
- 轻量级算法:优先使用HS256等计算量较小的算法
实施建议
- 性能基准测试:优化前后都应进行全面的性能测试
- 监控指标:关注CPU使用率、内存消耗、GC情况等
- 渐进式发布:优化方案应先在小规模环境验证
- 熔断降级:为JWT验证添加熔断机制,防止雪崩效应
总结
JWT认证作为API安全的重要环节,其性能优化需要平衡安全性与系统吞吐量。通过缓存验证结果、优化Netty配置等方案,可以显著提升Apache Shenyu网关在启用JWT插件时的性能表现。在实际生产环境中,建议根据具体业务场景选择合适的优化组合方案。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
867
513

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
265
305

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
598
57

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3