HuggingFace Datasets 高效数据访问技巧
2025-05-11 20:18:30作者:翟萌耘Ralph
在使用HuggingFace Datasets库处理大规模数据集时,数据访问方式的选择会显著影响程序性能。本文通过一个典型案例分析,揭示如何优化数据访问模式以获得最佳性能。
问题现象
当处理包含52000条记录、每条记录有500个元素的数据集时,开发者发现每次访问单条记录需要约20秒,这种性能显然无法满足实际需求。原始代码采用了列优先的访问方式:
# 低效的访问方式
a,b = dataset['random_input'][i],dataset['random_output'][i]
性能瓶颈分析
这种访问方式存在严重的性能问题,原因在于:
- 全列加载开销:
dataset['random_input']会首先加载整个列的所有数据到内存 - 重复操作:每次循环都重新加载整个列,造成巨大的I/O和内存开销
- 索引效率低下:在加载完整列后才进行索引操作,浪费计算资源
优化方案
正确的做法是采用行优先的访问模式:
# 高效的访问方式
a,b = dataset[i]['random_input'],dataset[i]['random_output']
这种方式的优势在于:
- 按需加载:只加载当前需要的行数据,避免不必要的数据传输
- 内存友好:不会一次性加载整个大型列到内存
- 索引优先:先定位到特定行,再访问该行的特定列
底层原理
HuggingFace Datasets基于Apache Arrow实现,其数据存储采用列式结构。当使用dataset[column][index]方式时:
- 首先解压整个列数据
- 然后在该列中查找特定索引
而使用dataset[index][column]方式时:
- 首先定位到特定行
- 然后只解压该行所需的列数据
最佳实践建议
- 对于大规模数据集,优先考虑行优先访问模式
- 如果需要处理特定列的所有数据,考虑使用
dataset[column]一次性加载后处理 - 对于迭代操作,使用
for row in dataset比索引访问更高效 - 考虑使用
dataset.set_format()预先设置数据格式,减少运行时转换开销
性能对比
在52000x500的数据集上测试表明:
- 行优先访问:毫秒级响应
- 列优先访问:20秒以上延迟
这种差异随着数据集规模的增大而更加明显,正确选择访问方式对提高数据处理效率至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
267
2.54 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
Ascend Extension for PyTorch
Python
98
126
暂无简介
Dart
557
124
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
用于管理和运行HarmonyOS Issue解决方案Demo集锦。
ArkTS
13
23
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.02 K
604
仓颉编译器源码及 cjdb 调试工具。
C++
117
93
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1