```markdown
2024-06-11 16:16:28作者:龚格成
# 使用GNN-CNN预测化合物与蛋白质相互作用的开源项目
在生物信息学和药物发现领域,准确预测化合物与蛋白质(CPI)的相互作用至关重要。本项目提供了一个基于深度学习的解决方案,利用图神经网络(GNN)对化合物进行建模,而卷积神经网络(CNN)则用于处理蛋白质序列。虽然项目开发者已指出将不再维护此项目并建议转向[量子深场模型](https://github.com/masashitsubaki/QuantumDeepField_molecule),但该项目的历史成就和公开代码仍具有一定的研究价值。
## 项目介绍
**CPI预测GNN-CNN**是[2018年Bioinformatics论文](https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/bty535/5050020?redirectedFrom=PDF)的PyTorch实现。它通过将SMILES表示的化合物转换为2D图形结构数据,并结合蛋白质的氨基酸序列,预测两者是否能相互作用。该模型以1:1的比例提供了两个CPI数据集:人类和*C. elegans*。
## 项目技术分析
模型的核心在于GNN和CNN的集成。GNN用于学习化合物中子图(即指纹)的表示,而CNN则处理蛋白质序列。尽管这个实现比原始论文中的模型更简单,没有边向量的更新,但它仍能捕捉到分子结构的关键信息。输入为化合物的SMILES字符串和蛋白质序列,输出为二进制标签(交互或不交互)。
## 应用场景
1. **药物研发**:预测新化合物可能与哪些蛋白质发生作用,从而指导药物设计。
2. **生物学研究**:理解蛋白质功能,探索药物靶点。
3. **个性化医疗**:根据个体基因组信息预测其对特定药物的反应。
## 项目特点
1. **易用性**:只需设置好环境(如PyTorch),预处理数据和训练模型只需两条命令。
2. **自定义性**:支持使用相同格式的自定义CPI数据集进行模型训练。
3. **效率**:简化版模型减少了计算复杂度,适用于快速实验。
4. **可复现性**:提供的脚本可以重现论文中的学习曲线。
## 部署说明
1. 运行`code/preprocess_data.py`创建CPI的预处理数据。
2. 运行`code/run_training.py`训练模型。
## 结果
在人类和*C. elegans*测试集上的学习曲线显示了模型的性能稳定性和渐近收敛。
## 引用
当您使用此项目时,请引用以下文献:
@article{tsubaki2018compound, title={Compound-protein Interaction Prediction with End-to-end Learning of Neural Networks for Graphs and Sequences}, author={Tsubaki, Masashi and Tomii, Kentaro and Sese, Jun}, journal={Bioinformatics}, year={2018} }
请注意:由于项目作者已经指出GNN方法对于分子建模可能无效,并推荐使用新的量子深场模型,因此我们鼓励读者考虑最新的研究进展。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Scramble项目中的文档注释格式化问题解析 Apache Sedona文档中的宏语法错误解析与修复 MarkdownMonster编辑器新增文档链接检查功能解析 Thredded项目集成中的html-pipeline依赖问题解析 MarkdownMonster拼写检查功能中单引号导致的定位偏移问题解析 Markdown Monster 表格编辑器窗口定位问题分析与解决方案 VSCode Markdown Preview Enhanced插件Open in Browser功能失效问题解析 MarkdownKit 1.7.3 版本发布:Swift 版本升级与语法解析优化 VSCode Markdown Preview Enhanced 中 ActionScript 语法高亮问题解析 Markdown Monster中自动生成目录的两种实现方式解析
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
630
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210