Genxword 技术文档
1. 安装指南
Genxword 是一个用 Python 编写的填字游戏生成器。要安装 Genxword,请按照以下步骤操作:
-
确保你的系统已经安装了 Python 3 和 pip。
-
打开终端或命令提示符,运行以下命令来安装 Genxword:
pip3 install genxword如果你使用的是 Linux 系统,并且需要管理员权限,可以在命令前加上
sudo:sudo pip3 install genxword -
安装完成后,你将拥有两个程序:
genxword-gtk(带有图形用户界面)和genxword(命令行工具)。
依赖项
Genxword 依赖于以下库:
- pycairo (python-cairo)
- pygobject (python-gobject 或 python-gi)
- python-gi-cairo(如果你使用的是基于 Debian 的系统)
- pango (gir1.2-pango-1.0)
- gtksourceview3 (gir1.2-gtksource-3.0)
- gettext
在 Linux 系统上,这些依赖项可以通过包管理器轻松安装,大多数发行版已经预装了这些库。
对于 Windows 用户,可以从指定网站下载这些依赖项。在安装 python-gobject 时,还需要安装 gtk3、pango、gdk-pixbuf 和 gtksourceview3。
2. 项目的使用说明
Genxword 提供了两种使用方式:图形用户界面(genxword-gtk)和命令行工具(genxword)。
图形用户界面 (genxword-gtk)
- 启动
genxword-gtk,你将看到一个直观的界面。 - 输入单词和对应的提示。
- 你可以选择从字典文件中随机选择单词,或者手动编辑单词列表。
- 生成填字游戏后,你可以将其保存为 PDF 文件,或者将空网格和答案保存为 PNG/SVG 格式,同时将单词库和提示保存为文本文件。
命令行工具 (genxword)
- 在终端中运行
genxword命令。 - 通过命令行参数指定单词列表、提示和输出格式。
- 生成填字游戏后,文件将保存在指定目录中。
3. 项目 API 使用文档
Genxword 提供了简单的 API 接口,允许开发者在自己的 Python 项目中调用填字游戏生成功能。
基本用法
from genxword import CrosswordGenerator
# 创建填字游戏生成器实例
generator = CrosswordGenerator()
# 添加单词和提示
generator.add_word("PYTHON", "一种编程语言")
generator.add_word("AI", "人工智能")
# 生成填字游戏
crossword = generator.generate()
# 保存填字游戏
crossword.save_as_pdf("output.pdf")
crossword.save_as_png("grid.png")
crossword.save_as_svg("key.svg")
API 方法
add_word(word, clue):添加一个单词及其提示。generate():生成填字游戏。save_as_pdf(filename):将填字游戏保存为 PDF 文件。save_as_png(filename):将空网格保存为 PNG 文件。save_as_svg(filename):将答案保存为 SVG 文件。
4. 项目安装方式
Genxword 的安装方式非常简单,只需通过 pip 安装即可。以下是详细的安装步骤:
-
确保你的系统已经安装了 Python 3 和 pip。
-
打开终端或命令提示符,运行以下命令:
pip3 install genxword如果你使用的是 Linux 系统,并且需要管理员权限,可以在命令前加上
sudo:sudo pip3 install genxword -
安装完成后,你可以通过
genxword-gtk启动图形界面,或者通过genxword使用命令行工具。
依赖项安装
在安装 Genxword 之前,确保所有依赖项已经安装。对于 Linux 用户,可以使用包管理器安装这些依赖项。对于 Windows 用户,可以从指定网站下载并安装所需的库。
通过以上步骤,你可以轻松安装并使用 Genxword 生成填字游戏。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00