Genxword 技术文档
1. 安装指南
Genxword 是一个用 Python 编写的填字游戏生成器。要安装 Genxword,请按照以下步骤操作:
-
确保你的系统已经安装了 Python 3 和 pip。
-
打开终端或命令提示符,运行以下命令来安装 Genxword:
pip3 install genxword如果你使用的是 Linux 系统,并且需要管理员权限,可以在命令前加上
sudo:sudo pip3 install genxword -
安装完成后,你将拥有两个程序:
genxword-gtk(带有图形用户界面)和genxword(命令行工具)。
依赖项
Genxword 依赖于以下库:
- pycairo (python-cairo)
- pygobject (python-gobject 或 python-gi)
- python-gi-cairo(如果你使用的是基于 Debian 的系统)
- pango (gir1.2-pango-1.0)
- gtksourceview3 (gir1.2-gtksource-3.0)
- gettext
在 Linux 系统上,这些依赖项可以通过包管理器轻松安装,大多数发行版已经预装了这些库。
对于 Windows 用户,可以从指定网站下载这些依赖项。在安装 python-gobject 时,还需要安装 gtk3、pango、gdk-pixbuf 和 gtksourceview3。
2. 项目的使用说明
Genxword 提供了两种使用方式:图形用户界面(genxword-gtk)和命令行工具(genxword)。
图形用户界面 (genxword-gtk)
- 启动
genxword-gtk,你将看到一个直观的界面。 - 输入单词和对应的提示。
- 你可以选择从字典文件中随机选择单词,或者手动编辑单词列表。
- 生成填字游戏后,你可以将其保存为 PDF 文件,或者将空网格和答案保存为 PNG/SVG 格式,同时将单词库和提示保存为文本文件。
命令行工具 (genxword)
- 在终端中运行
genxword命令。 - 通过命令行参数指定单词列表、提示和输出格式。
- 生成填字游戏后,文件将保存在指定目录中。
3. 项目 API 使用文档
Genxword 提供了简单的 API 接口,允许开发者在自己的 Python 项目中调用填字游戏生成功能。
基本用法
from genxword import CrosswordGenerator
# 创建填字游戏生成器实例
generator = CrosswordGenerator()
# 添加单词和提示
generator.add_word("PYTHON", "一种编程语言")
generator.add_word("AI", "人工智能")
# 生成填字游戏
crossword = generator.generate()
# 保存填字游戏
crossword.save_as_pdf("output.pdf")
crossword.save_as_png("grid.png")
crossword.save_as_svg("key.svg")
API 方法
add_word(word, clue):添加一个单词及其提示。generate():生成填字游戏。save_as_pdf(filename):将填字游戏保存为 PDF 文件。save_as_png(filename):将空网格保存为 PNG 文件。save_as_svg(filename):将答案保存为 SVG 文件。
4. 项目安装方式
Genxword 的安装方式非常简单,只需通过 pip 安装即可。以下是详细的安装步骤:
-
确保你的系统已经安装了 Python 3 和 pip。
-
打开终端或命令提示符,运行以下命令:
pip3 install genxword如果你使用的是 Linux 系统,并且需要管理员权限,可以在命令前加上
sudo:sudo pip3 install genxword -
安装完成后,你可以通过
genxword-gtk启动图形界面,或者通过genxword使用命令行工具。
依赖项安装
在安装 Genxword 之前,确保所有依赖项已经安装。对于 Linux 用户,可以使用包管理器安装这些依赖项。对于 Windows 用户,可以从指定网站下载并安装所需的库。
通过以上步骤,你可以轻松安装并使用 Genxword 生成填字游戏。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00