PEFT项目中模块保存问题的技术解析与解决方案
2025-05-12 17:42:23作者:廉彬冶Miranda
问题背景
在使用PEFT(Parameter-Efficient Fine-Tuning)库进行模型微调时,开发者遇到了一个关于模块保存的典型问题。具体场景是在使用ViT(Vision Transformer)模型进行图像分类任务时,当调整输入图像分辨率后,需要重新训练位置嵌入(position embeddings)参数,但发现这些参数无法通过PEFT的modules_to_save机制正确保存。
技术细节分析
1. 位置嵌入的特殊性
在Transformer架构中,位置嵌入用于为模型提供序列中各个位置的信息。对于ViT模型,当输入图像分辨率改变时,位置嵌入的维度也需要相应调整。这是因为:
- 原始ViT模型(如google/vit-base-patch16-224-in21k)通常使用224x224分辨率
- 当调整为512x512分辨率时,patch数量增加,需要更长的位置嵌入序列
2. PEFT的模块保存机制
PEFT库提供了modules_to_save参数,允许开发者指定需要完整保存(而非仅保存适配器)的模块。其设计初衷是:
- 主要保存适配器(Adapter)或LoRA层的参数
- 对于某些关键模块(如分类头),可以完整保存原始参数
- 通过正则匹配方式查找指定模块
3. 问题根源
问题的核心在于ViT模型中位置嵌入的实现方式:
- 位置嵌入通常实现为
nn.Parameter而非独立的nn.Module - PEFT原版代码无法正确处理这种直接作为模型属性的参数
- 错误提示表明系统尝试将
VitEmbeddings整体作为可训练模块,而非其子参数
解决方案
1. 官方修复方案
PEFT团队已经通过PR #2117修复了此问题,主要改进包括:
- 增强了对直接参数(如
nn.Parameter)的处理能力 - 现在可以正确识别和保存模型中的位置嵌入参数
- 用户只需更新到最新版PEFT即可解决此问题
2. 临时解决方案
在官方修复前,开发者可以采用以下替代方案:
方案一:修改模型结构
# 将位置嵌入包装为nn.Embedding
class CustomVitEmbeddings(nn.Module):
def __init__(self, original_embeddings):
super().__init__()
self.position_embeddings = nn.Embedding.from_pretrained(
original_embeddings.position_embeddings.data
)
# 复制其他必要的属性和方法
方案二:自定义训练循环
# 在训练循环中手动处理位置嵌入的梯度
for param in model.vit.embeddings.position_embeddings.parameters():
param.requires_grad = True
最佳实践建议
- 版本控制:始终使用最新版PEFT库,避免已知问题
- 模块检查:在指定
modules_to_save前,先通过named_parameters()确认模块路径 - 分辨率调整:改变输入大小时,务必检查所有依赖尺寸的参数
- 验证保存:训练后检查保存的模型文件,确认所有必要参数都已保存
技术延伸
这个问题揭示了深度学习框架中几个有趣的技术点:
- 参数与模块的区别:PyTorch中
nn.Parameter和nn.Module的不同设计目的和使用场景 - 模型微调策略:如何在参数高效微调中平衡适配器参数和原始参数的保存
- 架构适应性:当模型输入尺寸变化时,需要考虑哪些组件的连带调整
通过理解这些问题背后的原理,开发者可以更好地利用PEFT等工具进行高效的模型微调。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
698
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
280
React Native鸿蒙化仓库
JavaScript
270
328