DeepLabCut 3.0.0rc 视频分析中的内存问题解析与解决方案
2025-06-09 09:11:32作者:伍希望
问题背景
在DeepLabCut 3.0.0rc版本中,用户在使用多动物追踪功能分析视频时遇到了内存溢出的问题。具体表现为在分析4只小鼠、每只小鼠8个身体部位的120分钟视频时,系统内存被耗尽。有趣的是,在之前的2.3.3版本中,即使是更大的视频也能顺利完成分析。
问题现象
用户观察到GPU虽然被使用,但其显存并未充分利用,导致系统内存(RAM)被过度消耗。从用户提供的截图可以看到,GPU利用率正常但显存使用率很低,而系统内存则持续增长直至耗尽。
技术分析
经过开发团队调查,发现问题核心在于身份预测(identity prediction)数据的存储方式。在3.0.0rc版本中,身份预测数据被完整保存在内存中,随着视频帧数的增加,这些数据会不断累积,最终耗尽系统资源。
解决方案
开发团队提出了两个层面的解决方案:
-
内存优化:通过重构代码,减少了身份预测数据的内存占用。这一修改已经合并到主分支中。
-
持久化存储选项:为PyTorch引擎添加了
use_shelve参数支持。当设置为True时,分析结果会直接写入磁盘而非保存在内存中,从而保证内存使用量恒定,不受视频长度影响。
升级指南
用户可以通过以下命令获取包含修复的版本:
pip install --upgrade "git+https://github.com/DeepLabCut/DeepLabCut.git@pytorch_dlc#egg=deeplabcut"
升级后,在分析长视频时建议设置use_shelve=True参数以确保稳定的内存使用。
技术建议
对于需要进行长时间视频分析的用户,我们建议:
- 确保使用最新版本的DeepLabCut
- 对于超过30分钟的视频,启用
use_shelve选项 - 监控系统资源使用情况,特别是当分析极高分辨率或多动物场景时
- 考虑将长视频分割成多个片段分别分析,再合并结果
总结
DeepLabCut团队快速响应并解决了3.0.0rc版本中的内存管理问题,为用户提供了更稳定的视频分析体验。这一改进特别有利于神经科学和行为学研究领域需要处理长时间视频记录的研究人员。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
307
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882