DeepLabCut 3.0.0rc 视频分析中的内存问题解析与解决方案
2025-06-09 15:52:22作者:伍希望
问题背景
在DeepLabCut 3.0.0rc版本中,用户在使用多动物追踪功能分析视频时遇到了内存溢出的问题。具体表现为在分析4只小鼠、每只小鼠8个身体部位的120分钟视频时,系统内存被耗尽。有趣的是,在之前的2.3.3版本中,即使是更大的视频也能顺利完成分析。
问题现象
用户观察到GPU虽然被使用,但其显存并未充分利用,导致系统内存(RAM)被过度消耗。从用户提供的截图可以看到,GPU利用率正常但显存使用率很低,而系统内存则持续增长直至耗尽。
技术分析
经过开发团队调查,发现问题核心在于身份预测(identity prediction)数据的存储方式。在3.0.0rc版本中,身份预测数据被完整保存在内存中,随着视频帧数的增加,这些数据会不断累积,最终耗尽系统资源。
解决方案
开发团队提出了两个层面的解决方案:
-
内存优化:通过重构代码,减少了身份预测数据的内存占用。这一修改已经合并到主分支中。
-
持久化存储选项:为PyTorch引擎添加了
use_shelve参数支持。当设置为True时,分析结果会直接写入磁盘而非保存在内存中,从而保证内存使用量恒定,不受视频长度影响。
升级指南
用户可以通过以下命令获取包含修复的版本:
pip install --upgrade "git+https://github.com/DeepLabCut/DeepLabCut.git@pytorch_dlc#egg=deeplabcut"
升级后,在分析长视频时建议设置use_shelve=True参数以确保稳定的内存使用。
技术建议
对于需要进行长时间视频分析的用户,我们建议:
- 确保使用最新版本的DeepLabCut
- 对于超过30分钟的视频,启用
use_shelve选项 - 监控系统资源使用情况,特别是当分析极高分辨率或多动物场景时
- 考虑将长视频分割成多个片段分别分析,再合并结果
总结
DeepLabCut团队快速响应并解决了3.0.0rc版本中的内存管理问题,为用户提供了更稳定的视频分析体验。这一改进特别有利于神经科学和行为学研究领域需要处理长时间视频记录的研究人员。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
408
3.15 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
674
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
321
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
659
React Native鸿蒙化仓库
JavaScript
263
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868