探索深度学习的边界:Exemplar Memory for Domain Adaptive Person Re-Identification
2024-05-21 10:04:44作者:范垣楠Rhoda
在人工智能的深海中,跨域适应(Domain Adaptation)是机器学习领域的一项重要挑战,尤其是在目标识别任务上。今天,我们要向您介绍一个令人惊叹的开源项目——Invariance Matters,它利用Exemplar Memory为域自适应人重识别(Person Re-identification, Re-ID)带来了全新的解决方案。该项目源自CVPR 2019,并已在多个数据集上展示出卓越的性能。
项目简介
Invariance Matters
是一个基于Pytorch框架的深度学习项目,其核心理念在于通过建立Exemplar Memory来实现域之间的不变性,从而提高人重识别的准确性。该模型适用于处理不同摄像头环境下的图像差异,如光照变化、视角变换等,旨在使算法能在一个域内训练后,在其他相关但不同的域上表现出色。
项目技术分析
项目采用先进的深度学习架构,结合了域适应和记忆机制。在训练过程中,系统构建一个Exemplar Memory库,存储来自源域的关键实例信息。在推理阶段,该记忆库帮助模型理解和匹配目标域中的新样本,增强模型对变化的鲁棒性。
关键实现包括:
- 域转换层:利用CycleGAN或StarGAN将源域图像转换为目标域风格,模拟真实世界的变化。
- Exemplar Memory:收集和存储源域的代表性样本,用于指导目标域的学习过程。
- 损失函数设计:定制化的损失函数强化了模型对身份不变性和跨域一致性学习。
应用场景
这个项目非常适合以下场景:
- 多摄像头监控网络中的行人追踪与识别。
- 零样本迁移学习,即在没有目标域标签的情况下,进行人重识别。
- 智能安全系统,可以跨不同的地理环境或天气条件识别人脸或行人。
项目特点
- 高效适应:即使面对大规模跨域数据,也能快速适应并取得优秀结果。
- 广泛兼容:支持Market-1501、DukeMTMC-reID和MSMT17等多个主流Re-ID数据集,以及相应的CamStyle转换版本。
- 易于使用:简洁明了的代码结构,方便研究人员进行复现和扩展实验。
- 创新性方法:引入Exemplar Memory策略,提高了模型的泛化能力和鲁棒性。
如果您正在寻找解决跨域人重识别问题的新途径,或者希望在深度学习研究中尝试新颖的方法,那么这个项目无疑值得您一试。现在就加入我们,一起探索深度学习的新边界!
# 开始您的探索之旅
python main.py -s duke -t market --logs-dir logs/duke2market-ECN
对于更多详细的安装和使用指南,可以直接查看项目文档。
最后,别忘了引用这项工作:
@inproceedings{zhong2019invariance,
title={Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification},
author={Zhong, Zhun and Zheng, Liang and Luo, Zhiming and Li, Shaozi and Yang, Yi},
booktitle={Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2019},
}
如有任何疑问,请联系项目作者Zhun Zhong,期待您的参与!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5