探索深度学习的边界:Exemplar Memory for Domain Adaptive Person Re-Identification
2024-05-21 10:04:44作者:范垣楠Rhoda
在人工智能的深海中,跨域适应(Domain Adaptation)是机器学习领域的一项重要挑战,尤其是在目标识别任务上。今天,我们要向您介绍一个令人惊叹的开源项目——Invariance Matters,它利用Exemplar Memory为域自适应人重识别(Person Re-identification, Re-ID)带来了全新的解决方案。该项目源自CVPR 2019,并已在多个数据集上展示出卓越的性能。
项目简介
Invariance Matters是一个基于Pytorch框架的深度学习项目,其核心理念在于通过建立Exemplar Memory来实现域之间的不变性,从而提高人重识别的准确性。该模型适用于处理不同摄像头环境下的图像差异,如光照变化、视角变换等,旨在使算法能在一个域内训练后,在其他相关但不同的域上表现出色。
项目技术分析
项目采用先进的深度学习架构,结合了域适应和记忆机制。在训练过程中,系统构建一个Exemplar Memory库,存储来自源域的关键实例信息。在推理阶段,该记忆库帮助模型理解和匹配目标域中的新样本,增强模型对变化的鲁棒性。
关键实现包括:
- 域转换层:利用CycleGAN或StarGAN将源域图像转换为目标域风格,模拟真实世界的变化。
- Exemplar Memory:收集和存储源域的代表性样本,用于指导目标域的学习过程。
- 损失函数设计:定制化的损失函数强化了模型对身份不变性和跨域一致性学习。
应用场景
这个项目非常适合以下场景:
- 多摄像头监控网络中的行人追踪与识别。
- 零样本迁移学习,即在没有目标域标签的情况下,进行人重识别。
- 智能安全系统,可以跨不同的地理环境或天气条件识别人脸或行人。
项目特点
- 高效适应:即使面对大规模跨域数据,也能快速适应并取得优秀结果。
- 广泛兼容:支持Market-1501、DukeMTMC-reID和MSMT17等多个主流Re-ID数据集,以及相应的CamStyle转换版本。
- 易于使用:简洁明了的代码结构,方便研究人员进行复现和扩展实验。
- 创新性方法:引入Exemplar Memory策略,提高了模型的泛化能力和鲁棒性。
如果您正在寻找解决跨域人重识别问题的新途径,或者希望在深度学习研究中尝试新颖的方法,那么这个项目无疑值得您一试。现在就加入我们,一起探索深度学习的新边界!
# 开始您的探索之旅
python main.py -s duke -t market --logs-dir logs/duke2market-ECN
对于更多详细的安装和使用指南,可以直接查看项目文档。
最后,别忘了引用这项工作:
@inproceedings{zhong2019invariance,
title={Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification},
author={Zhong, Zhun and Zheng, Liang and Luo, Zhiming and Li, Shaozi and Yang, Yi},
booktitle={Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2019},
}
如有任何疑问,请联系项目作者Zhun Zhong,期待您的参与!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355