探索深度学习的边界:Exemplar Memory for Domain Adaptive Person Re-Identification
2024-05-21 10:04:44作者:范垣楠Rhoda
在人工智能的深海中,跨域适应(Domain Adaptation)是机器学习领域的一项重要挑战,尤其是在目标识别任务上。今天,我们要向您介绍一个令人惊叹的开源项目——Invariance Matters,它利用Exemplar Memory为域自适应人重识别(Person Re-identification, Re-ID)带来了全新的解决方案。该项目源自CVPR 2019,并已在多个数据集上展示出卓越的性能。
项目简介
Invariance Matters
是一个基于Pytorch框架的深度学习项目,其核心理念在于通过建立Exemplar Memory来实现域之间的不变性,从而提高人重识别的准确性。该模型适用于处理不同摄像头环境下的图像差异,如光照变化、视角变换等,旨在使算法能在一个域内训练后,在其他相关但不同的域上表现出色。
项目技术分析
项目采用先进的深度学习架构,结合了域适应和记忆机制。在训练过程中,系统构建一个Exemplar Memory库,存储来自源域的关键实例信息。在推理阶段,该记忆库帮助模型理解和匹配目标域中的新样本,增强模型对变化的鲁棒性。
关键实现包括:
- 域转换层:利用CycleGAN或StarGAN将源域图像转换为目标域风格,模拟真实世界的变化。
- Exemplar Memory:收集和存储源域的代表性样本,用于指导目标域的学习过程。
- 损失函数设计:定制化的损失函数强化了模型对身份不变性和跨域一致性学习。
应用场景
这个项目非常适合以下场景:
- 多摄像头监控网络中的行人追踪与识别。
- 零样本迁移学习,即在没有目标域标签的情况下,进行人重识别。
- 智能安全系统,可以跨不同的地理环境或天气条件识别人脸或行人。
项目特点
- 高效适应:即使面对大规模跨域数据,也能快速适应并取得优秀结果。
- 广泛兼容:支持Market-1501、DukeMTMC-reID和MSMT17等多个主流Re-ID数据集,以及相应的CamStyle转换版本。
- 易于使用:简洁明了的代码结构,方便研究人员进行复现和扩展实验。
- 创新性方法:引入Exemplar Memory策略,提高了模型的泛化能力和鲁棒性。
如果您正在寻找解决跨域人重识别问题的新途径,或者希望在深度学习研究中尝试新颖的方法,那么这个项目无疑值得您一试。现在就加入我们,一起探索深度学习的新边界!
# 开始您的探索之旅
python main.py -s duke -t market --logs-dir logs/duke2market-ECN
对于更多详细的安装和使用指南,可以直接查看项目文档。
最后,别忘了引用这项工作:
@inproceedings{zhong2019invariance,
title={Invariance Matters: Exemplar Memory for Domain Adaptive Person Re-identification},
author={Zhong, Zhun and Zheng, Liang and Luo, Zhiming and Li, Shaozi and Yang, Yi},
booktitle={Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2019},
}
如有任何疑问,请联系项目作者Zhun Zhong,期待您的参与!
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5