Depth-Anything项目中深度图与视差图的转换机制及训练流程解析
2025-05-29 14:31:11作者:宗隆裙
深度图到视差图的转换原理
在Depth-Anything项目中,深度图(depth map)到视差图(disparity map)的转换采用了标准的倒数关系转换方法。具体而言,项目团队使用公式d = 1/t进行转换,其中t代表深度值,d代表转换后的视差值。
值得注意的是,虽然不同数据集可能采用不同的转换公式(例如TartanAir数据集使用disp = 80/depth的转换方式),但在Depth-Anything框架中,这种差异并不会影响最终结果。这是因为项目会对转换后的视差图进行归一化处理,通过min-max归一化将视差值映射到0-1范围内。这种归一化操作有效地消除了不同数据集间可能存在的比例因子差异(如TartanAir中的80倍系数),确保了模型训练的一致性。
两阶段训练流程详解
Depth-Anything采用了创新的两阶段训练策略,其中第二阶段的学生模型训练具有以下特点:
- 数据规模:训练使用了海量的6200万张未标记图像
- 训练周期:与传统的多轮次训练不同,学生模型仅在这些数据上进行单轮训练
- 训练效率:这种设计显著减少了计算资源消耗,同时保证了模型性能
这种训练策略的精妙之处在于,它通过大规模数据的一次性遍历,实现了模型知识的有效迁移和泛化能力的提升,而无需进行耗时的多轮迭代。项目结果表明,这种训练方式在保证模型性能的同时,大幅提升了训练效率。
技术实现要点
对于希望复现或基于Depth-Anything进行二次开发的用户,需要特别注意以下技术细节:
- 数据预处理:无论原始数据集采用何种深度表示方式,都应先转换为视差图,再进行归一化
- 训练流程:严格遵循两阶段训练设计,特别是第二阶段的学生模型单轮训练策略
- 计算资源:虽然训练轮次减少,但由于数据量庞大,仍需准备足够的计算资源
Depth-Anything的这些设计选择体现了深度学习模型训练中的一些重要原则:通过合理的数据表示统一化处理来增强模型泛化能力,以及通过创新的训练策略来平衡计算成本和模型性能。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile08
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0