LiteLLM项目中OpenAI Web搜索费用计算错误的分析与修复
在LiteLLM项目的最新版本(v1.67.4-stable)中,发现了一个关于OpenAI Web搜索功能费用计算的错误。该错误会导致即使用户没有实际使用Web搜索功能,系统也会错误地收取相关费用。
问题背景
OpenAI的Web搜索功能允许模型在生成响应时主动调用外部网络资源获取最新信息。根据OpenAI官方定价策略,只有当模型实际调用了Web搜索工具时,才会产生额外的搜索费用。然而,在LiteLLM的当前实现中,只要在请求参数中设置了search_context_size属性,系统就会自动添加Web搜索费用,即使模型最终并未实际调用该功能。
技术细节分析
问题的核心在于费用计算逻辑的判定条件不够精确。当前实现仅检查请求参数中是否包含Web搜索工具的定义,而没有验证该工具是否被实际调用。这种实现方式与OpenAI官方的计费模型存在偏差。
OpenAI API的响应结构中包含一个annotations字段,其中会记录模型实际引用的外部URL信息。只有当这个字段包含url_citation类型的注解时,才表示模型确实执行了Web搜索操作。
修复方案
项目维护者提出了基于响应注解的改进方案:
- 不再单纯依赖请求参数中的工具定义来判断是否收取Web搜索费用
- 改为检查响应中的
annotations字段 - 当且仅当发现
type: url_citation的注解时,才应用Web搜索费用
这种改进更准确地反映了OpenAI的实际计费逻辑,确保用户只在真正使用Web搜索功能时才会被收取相应费用。
影响与意义
这一修复对用户具有直接的财务影响。在某些场景下,用户可能只是预先定义Web搜索工具作为可选功能,但最终模型可能基于上下文判断不需要执行搜索。原始实现会导致这些用户被错误收费,而修复后则能准确反映实际使用情况。
对于LiteLLM项目而言,这一改进提升了费用计算的准确性,增强了用户信任度,使项目更加符合OpenAI官方的API使用规范。
总结
API代理层在转发请求和响应时,需要精确理解底层服务的业务逻辑和计费模型。LiteLLM项目通过这次修复,展示了其对OpenAI API深度集成的能力,同时也为其他类似项目提供了处理第三方API费用计算的参考范例。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00