Bunster v0.10.0 发布:支持条件表达式与静态文件嵌入
Bunster 是一个现代化的 shell 脚本语言,它结合了传统 shell 的简洁性和现代编程语言的强大功能。最新发布的 v0.10.0 版本带来了多项重要更新,包括条件表达式支持、静态文件嵌入、延迟执行等实用功能,进一步提升了脚本编写的灵活性和功能性。
条件表达式支持
新版本中,Bunster 增加了对条件表达式的完整支持,包括三种常见形式:
test命令形式:
test -v var
- 方括号形式:
[ -t 1 ]
- 双括号形式(支持更丰富的表达式):
[[ 10 -gt 20 ]]
这些条件表达式支持各种文件测试操作符(如 -f、-d)、字符串比较(=、!=)、数值比较(-eq、-gt)等。特别值得注意的是,新版本还支持逻辑运算符(&&、||、-a、-o)和表达式分组,使得复杂条件的编写更加灵活。
静态文件嵌入功能
v0.10.0 引入了一个创新性的静态文件嵌入功能,允许脚本直接引用外部文件内容:
@embed main.js
embed cat main.js | node
embed ls .
这个功能特别适合需要将配置文件、模板或其他资源文件与脚本打包在一起的场景。通过 @embed 指令,可以方便地将外部文件内容嵌入到脚本中,而 embed 命令则提供了对这些嵌入内容的操作接口。
延迟执行机制
新版本增加了 defer 关键字,用于延迟执行命令或命令组:
defer echo foo
defer {
echo bar
}
defer (
echo baz
)
这种机制类似于 Go 语言中的 defer 语句,可以确保某些操作(如资源清理)在函数或脚本结束时执行,无论中间是否发生错误。
其他重要改进
-
shift 内置命令:支持对位置参数的移位操作,便于处理命令行参数。
-
UTF-8 编码支持:现在可以正确处理多语言文本,如中文:
echo "雷卷是一个好程序员!"
-
Nix 包管理器支持:Bunster 现在已加入 nixpkgs,方便 Nix 用户安装使用。
-
错误修复:解决了命令替换导致程序意外退出的问题,修复了循环头部命令过多时的 panic 问题。
技术实现亮点
从技术角度看,v0.10.0 的几个实现值得关注:
-
条件表达式的解析和执行采用了短路求值策略,确保逻辑表达式的效率。
-
文件嵌入功能实现了安全的路径检查,防止潜在的安全问题。
-
延迟执行机制通过内部栈结构实现,确保多个 defer 语句按照后进先出的顺序执行。
-
UTF-8 支持涉及到底层字符串处理的全面升级,确保对各种语言的兼容性。
总结
Bunster v0.10.0 通过引入条件表达式、文件嵌入等实用功能,大大增强了脚本的表达能力和实用性。这些改进使得 Bunster 不仅保持了 shell 脚本的简洁性,还具备了现代编程语言的强大特性。对于需要编写复杂自动化脚本或工具的开发人员来说,这些新功能将显著提升开发效率和代码可维护性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00