OpenSearch-Dashboards项目中DOMPurify库的安全问题分析与应对
问题背景
在OpenSearch-Dashboards项目中,发现了一个涉及DOMPurify库的中等严重性安全问题(CVE-2025-26791)。DOMPurify是一个广泛使用的HTML清理库,用于防止XSS(跨站脚本)攻击。该问题存在于3.1.6版本中,可能导致特定类型的脚本注入攻击。
技术细节
该问题源于DOMPurify在处理模板字面量时的正则表达式实现存在不足。具体来说,当解析某些特殊构造的HTML内容时,清理过程可能不完全,导致攻击者能够注入特定代码。这种攻击被称为"特定类型的脚本注入",因为它利用了浏览器解析HTML时的特殊行为来绕过安全防护。
特定类型的脚本注入是一种特殊类型的攻击,它利用了浏览器解析HTML时的特定行为。攻击者可以构造特殊的HTML标记,这些标记在最初通过DOMPurify清理时看起来是安全的,但在浏览器解析过程中会转变为危险的代码。
影响范围
此问题影响OpenSearch-Dashboards项目中使用的DOMPurify 3.1.6版本。虽然CVSS评分为4.5(中等),属于本地攻击且需要高复杂度,但任何脚本注入问题都可能带来安全风险,特别是在数据可视化工具中,因为它可能允许攻击者操纵显示内容或获取信息。
解决方案
项目维护团队已经提供了明确的修复方案:将DOMPurify升级到3.2.4或更高版本。这个修复版本修正了模板字面量正则表达式的问题,彻底解决了潜在的风险。
对于使用OpenSearch-Dashboards的开发者和运维人员,建议采取以下步骤:
- 检查项目依赖中DOMPurify的版本
- 更新package.json文件,将DOMPurify依赖指定为3.2.4或更高版本
- 运行npm update或yarn update确保依赖更新
- 重新测试相关功能以确保兼容性
最佳实践
除了立即修复这个特定问题外,建议OpenSearch-Dashboards用户考虑以下安全最佳实践:
- 建立定期依赖检查机制,及时发现并修复已知问题
- 实施内容安全策略(CSP)作为额外的防护层
- 对用户输入进行多重验证,不仅依赖客户端清理
- 保持所有依赖项的最新状态,特别是安全相关库
总结
安全问题的及时发现和修复是维护开源项目健康的重要环节。OpenSearch-Dashboards团队对此问题的快速响应体现了他们对项目安全的重视。作为用户,及时应用安全更新是保护自身数据安全的关键步骤。通过将DOMPurify升级到3.2.4或更高版本,可以有效地消除这一特定的风险,确保数据可视化环境的安全性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00