Interpret项目中的EBM模型多袋集成与子模型提取技术
EBM模型的多袋集成机制
Interpret项目中的ExplainableBoostingRegressor(EBM)模型支持通过outer_bags参数实现多袋集成。当设置outer_bags=14时,模型实际上会训练14个独立的子模型(每个outer_bags=1),然后将它们的预测结果进行平均。这种集成方式能够提高模型的稳定性和泛化能力。
子模型提取的两种技术方案
方案一:独立训练再合并
-
独立训练子模型:可以分别训练14个ExplainableBoostingRegressor(outer_bags=1)模型,每个模型使用不同的bag矩阵。bag矩阵的每一行对应一个子模型,包含+1和-1值,指示样本是否被包含在训练集中。
-
交互项处理挑战:由于每个子模型可能会选择不同的交互项组合,建议先训练无交互项的EBM模型,然后使用measure_interactions函数确定共同的交互项集合,最后重新训练包含这些指定交互项的模型。
-
模型合并:训练完成后,可以使用merge_ebms函数将这些独立训练的子模型合并为一个集成模型。
方案二:从集成模型中提取子模型
-
直接访问内部模型:ExplainableBoostingRegressor对象内部存储了所有bagged模型的信息,包括bagged_scores_和bagged_intercept_等属性。
-
临时修改模型行为:通过以下代码可以将集成模型临时转换为特定子模型的行为:
# 使EBM表现为第4个子模型(索引从0开始)
ebm.term_scores_ = ebm.bagged_scores_[3]
ebm.intercept_ = ebm.bagged_intercept_[3]
ebm.standard_deviations_ = None # 移除误差条,因为单模型不适用
- 预测与解释:修改后,模型在预测和特征重要性分析时都会表现为该特定子模型的行为。
技术应用场景与建议
-
交叉验证:如问题所述,这种方法特别适合实现交叉验证,可以在不同子模型上计算指标后取平均。
-
模型稳定性分析:通过比较不同子模型的行为,可以评估模型对数据扰动的敏感性。
-
生产环境部署:方案二更为推荐,因为它避免了重新训练的开销,且能保持原始集成模型的交互项一致性。
-
注意事项:当使用方案二时,需要注意保存原始模型状态,或者在修改前创建模型副本,以免意外改变模型行为。
未来改进方向
虽然目前可以通过上述技术方案实现子模型提取,但这一功能尚未正式纳入API。将其标准化将有助于提高用户体验,包括:
- 提供官方方法如get_bagged_model(index)来安全获取子模型
- 添加子模型合并的便捷接口
- 完善相关文档和示例
这种改进将使EBM模型的多袋集成功能更加易用和强大。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00