Jsonnet v0.21.0-rc1 发布:功能增强与问题修复
Jsonnet 是一种数据模板语言,它扩展了 JSON 格式,增加了变量、函数、条件语句等编程特性,使得配置文件的编写更加灵活和高效。Jsonnet 可以生成 JSON、YAML 等格式的输出,广泛应用于 Kubernetes 配置管理、基础设施即代码等领域。
近日,Jsonnet 项目发布了 v0.21.0-rc1 版本,这是近两年来首个发布候选版本。该版本包含了多项功能增强、问题修复以及构建系统的改进,为正式版的发布奠定了基础。下面我们将详细介绍这个版本的主要变化。
语言特性改进
本次更新对 Jsonnet 语言本身进行了一些增强:
-
数组切片支持负索引:现在可以使用负数作为数组切片的起始或结束索引,行为与 Python 类似,负数索引会从数组末尾开始计算。这一改进使得数组操作更加灵活。
-
多行文本块改进:新增了
|||-
语法,可以去除文本块末尾的换行符。这在处理多行字符串时特别有用,可以更精确地控制输出格式。
标准库功能增强
Jsonnet 的标准库在这个版本中得到了显著扩充,新增了许多实用函数:
-
数组和对象操作:
std.contains
:检查元素是否存在于数组或字符串中std.objectRemoveKey
:从对象中移除指定键std.remove
和std.removeAt
:从数组中移除元素std.flattenDeepArray
:深度展平嵌套数组std.minArray
和std.maxArray
:找出数组中的最小/最大值std.avg
:计算数组平均值
-
数学运算:
std.atan2
和std.hypot
:新增三角函数std.log2
和std.log10
:新增对数函数std.pi
:新增π常量std.deg2rad
和std.rad2deg
:角度与弧度转换
-
字符串处理:
std.equalsIgnoreCase
:不区分大小写的字符串比较std.trim
:去除字符串两端空白
-
类型判断:
std.isEven
和std.isOdd
:判断数字奇偶性std.isInteger
和std.isDecimal
:判断数字类型
问题修复
这个版本修复了多个长期存在的问题:
-
Unicode 处理:修复了基本多语言平面之外的 Unicode 字符解码问题,确保 UTF-8 输入能正确解析。
-
数字输出:现在数字的输出格式不再受系统区域设置影响,保证一致性。
-
对象可见性:修复了对象推导式中字段可见性继承不正确的问题。
-
Windows 兼容性:在 Windows 系统上现在支持反斜杠作为路径分隔符。
-
YAML 处理:更新了 RapidYAML 到 0.5.0 版本,修复了多个 YAML 解析相关问题。
构建系统改进
在构建和依赖管理方面也有多项改进:
-
Bazel 构建:新增了 MODULE.bazel 文件,支持 bzlmod 兼容性。
-
Python 支持:改进了 Windows/MSVC 上的 Python 构建支持。
-
依赖更新:更新了多个依赖库版本,包括 RapidYAML 和 golang.org/x/crypto。
-
发布流程:PyPI 包现在直接从 GitHub Actions 发布,并包含发布者证明。
总结
Jsonnet v0.21.0-rc1 是一个重要的更新版本,它不仅修复了多个长期存在的问题,还增加了许多实用的标准库函数,改进了语言特性。特别是对 Windows 平台的更好支持和 Unicode 处理的改进,使得 Jsonnet 在不同环境下的表现更加一致可靠。
对于使用 Jsonnet 进行配置管理的开发者来说,这个版本值得关注和测试。发布候选版本的目的正是为了收集用户反馈,确保正式版的稳定性。建议用户在测试环境中试用这个版本,并报告遇到的任何问题,以帮助项目团队进一步完善。
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0255Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
最新内容推荐
项目优选









