交互式3D可视化在Seurat中的应用教程
项目介绍
此开源项目提供了一套R语言脚本,用于基于Seurat分析的scRNAseq数据创建互动式的3D UMAP和tSNE图。由Dragonmasterx87维护并托管在GitHub上,它特别适用于那些利用Seurat工具进行单细胞RNA测序数据分析的研究人员。这个项目兼容Seurat的不同版本,从v2.3.4到最新的v3.x系列,并且V2版本的代码还集成了RShiny以提供更佳的图形交互体验。
项目快速启动
要快速开始使用这个项目,你需要先确保你的环境中安装了必要的R包,特别是Seurat和plotly。以下是基本步骤:
-
安装必要的R包:
install.packages("Seurat") install.packages("plotly") -
加载库:
library(Seurat) library(plotly) -
准备Seurat对象: 确保你有一个已预处理的Seurat对象,如果你没有,首先需要通过Seurat的工作流程来构建一个。
-
运行3D UMAP: 假设你已经有了Seurat对象,你需要重新计算或获取3个维度的UMAP坐标。
your_seurat_object <- RunUMAP(your_seurat_object, dims = 1:10, n_components = 3L) -
数据提取与可视化: 提取UMAP坐标和任何你想展示的分类信息,然后使用plot_ly进行绘制。
plot_data <- FetchData(your_seurat_object, vars = c("UMAP_1", "UMAP_2", "UMAP_3", "seurat_clusters")) plot_data$label <- paste(rownames(plot_data)) fig <- plot_ly(data = plot_data, x = ~UMAP_1, y = ~UMAP_2, z = ~UMAP_3, color = ~seurat_clusters, type = "scatter3d", mode = "markers", marker = list(size = 5), text = ~label, hoverinfo = "text") -
显示与保存结果: 直接在RStudio中运行这段代码即可看到交互式的3D图。你可以将该图保存为HTML文件供后续查看。
plotly::htmlwidgets::saveWidget(fig, "3D_UMAP_plot.html")
应用案例和最佳实践
在研究中,当你想探索细胞类型的空间分布或特定基因表达模式时,此工具尤其有用。例如,你可以通过调整颜色映射来表示不同基因的表达水平,或者对特定的细胞群做突出展示。最佳实践包括预先优化UMAP参数以得到最有意义的降维表示,以及适当调整plot_ly中的视觉效果(如点的大小、颜色和透明度)来提高可读性。
典型生态项目
尽管本项目本身就是一个独立的工具,但在单细胞社区内,结合使用Seurat进行数据预处理和分析,与其他如ggplot2、Bioconductor中的包进行下游分析,可以构成一个强大的分析流程。此外,对于想要进一步扩展可视化功能的用户,可以探索集成RShiny进行交互式应用程序开发,这样可以允许非技术人员也能够轻松地探索这些复杂的3D可视化结果。
通过以上步骤,研究人员和生物信息学家可以有效地利用此项目来进行单细胞数据的3D可视化分析,从而获得更加直观的数据理解。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C039
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00