交互式3D可视化在Seurat中的应用教程
项目介绍
此开源项目提供了一套R语言脚本,用于基于Seurat分析的scRNAseq数据创建互动式的3D UMAP和tSNE图。由Dragonmasterx87维护并托管在GitHub上,它特别适用于那些利用Seurat工具进行单细胞RNA测序数据分析的研究人员。这个项目兼容Seurat的不同版本,从v2.3.4到最新的v3.x系列,并且V2版本的代码还集成了RShiny以提供更佳的图形交互体验。
项目快速启动
要快速开始使用这个项目,你需要先确保你的环境中安装了必要的R包,特别是Seurat和plotly。以下是基本步骤:
-
安装必要的R包:
install.packages("Seurat") install.packages("plotly") -
加载库:
library(Seurat) library(plotly) -
准备Seurat对象: 确保你有一个已预处理的Seurat对象,如果你没有,首先需要通过Seurat的工作流程来构建一个。
-
运行3D UMAP: 假设你已经有了Seurat对象,你需要重新计算或获取3个维度的UMAP坐标。
your_seurat_object <- RunUMAP(your_seurat_object, dims = 1:10, n_components = 3L) -
数据提取与可视化: 提取UMAP坐标和任何你想展示的分类信息,然后使用plot_ly进行绘制。
plot_data <- FetchData(your_seurat_object, vars = c("UMAP_1", "UMAP_2", "UMAP_3", "seurat_clusters")) plot_data$label <- paste(rownames(plot_data)) fig <- plot_ly(data = plot_data, x = ~UMAP_1, y = ~UMAP_2, z = ~UMAP_3, color = ~seurat_clusters, type = "scatter3d", mode = "markers", marker = list(size = 5), text = ~label, hoverinfo = "text") -
显示与保存结果: 直接在RStudio中运行这段代码即可看到交互式的3D图。你可以将该图保存为HTML文件供后续查看。
plotly::htmlwidgets::saveWidget(fig, "3D_UMAP_plot.html")
应用案例和最佳实践
在研究中,当你想探索细胞类型的空间分布或特定基因表达模式时,此工具尤其有用。例如,你可以通过调整颜色映射来表示不同基因的表达水平,或者对特定的细胞群做突出展示。最佳实践包括预先优化UMAP参数以得到最有意义的降维表示,以及适当调整plot_ly中的视觉效果(如点的大小、颜色和透明度)来提高可读性。
典型生态项目
尽管本项目本身就是一个独立的工具,但在单细胞社区内,结合使用Seurat进行数据预处理和分析,与其他如ggplot2、Bioconductor中的包进行下游分析,可以构成一个强大的分析流程。此外,对于想要进一步扩展可视化功能的用户,可以探索集成RShiny进行交互式应用程序开发,这样可以允许非技术人员也能够轻松地探索这些复杂的3D可视化结果。
通过以上步骤,研究人员和生物信息学家可以有效地利用此项目来进行单细胞数据的3D可视化分析,从而获得更加直观的数据理解。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00