nnUNet模型权重操作导致检查点文件增大的技术解析
2025-06-01 22:22:12作者:董灵辛Dennis
问题背景
在使用nnUNet进行联邦学习场景时,研究人员发现对模型权重进行数学运算(如平均操作)会导致保存的检查点文件大小显著增加。这一现象在普通PyTorch模型中并未出现,但在nnUNet架构中表现得尤为明显。
问题根源分析
经过深入的技术调查,发现问题的核心在于nnUNet网络架构的特殊设计:
-
权重共享机制:nnUNet的解码器(decoder)保留了编码器(encoder)的引用,导致在模型的状态字典(state_dict)中会出现多个键指向同一内存地址的参数。例如:
decoder.encoder.stages.0.0.convs.0.conv.weightencoder.stages.0.0.convs.0.conv.weightdecoder.encoder.stages.0.0.convs.0.all_modules.0.weight
-
内存地址验证:通过
.data_ptr()方法可以验证这些键确实指向相同的物理内存地址。 -
数学运算的影响:当对这些权重进行数学运算(如除以2)时,PyTorch会创建新的内存分配,打破了原有的共享引用关系,导致相同参数被多次存储。
解决方案实现
针对这一问题,我们提出了两种解决方案:
方案一:基于内存地址识别的权重处理
def average_and_store_model(network, file_base_path):
network_weights = network.state_dict()
keys = list(network_weights.keys())
# 建立内存地址到键名的映射
address_key_dict = {}
for k in keys:
address = network_weights[k].data_ptr()
if address not in address_key_dict:
address_key_dict[address] = [k]
else:
address_key_dict[address].append(k)
# 处理复制和平均操作
copied_network_weights = {}
averaged_network_weights = {}
for address in address_key_dict:
# 复制操作
copied_weights = network_weights[address_key_dict[address][0]].clone().detach()
for k in address_key_dict[address]:
copied_network_weights[k] = copied_weights
# 平均操作
averaged_weights = network_weights[address_key_dict[address][0]].clone().detach() / 2.
for k in address_key_dict[address]:
averaged_network_weights[k] = averaged_weights
# 保存结果...
方案二:原地操作的模型平均方法(推荐)
def average_model(list_of_network_parameters):
network_weights = list_of_network_parameters[0]
keys = list(network_weights.keys())
# 建立内存地址映射
address_key_dict = {}
for k in keys:
address = network_weights[k].data_ptr()
if address not in address_key_dict:
address_key_dict[address] = [k]
else:
address_key_dict[address].append(k)
# 原地操作进行平均
for address in address_key_dict:
for net in list_of_network_parameters[1:]:
network_weights[address_key_dict[address][0]] += net[address_key_dict[address][0]]
network_weights[address_key_dict[address][0]] /= len(list_of_network_parameters)
return network_weights
技术要点总结
-
内存效率:方案二采用原地操作,避免了不必要的内存分配,是更高效的实现方式。
-
正确性验证:通过断言检查确保处理后相同参数的各个引用保持一致。
-
联邦学习应用:这种方法特别适合联邦学习场景,可以高效地聚合多个模型的参数。
-
通用性:虽然问题是在nnUNet中发现的,但这种处理权重共享的方法可以应用于任何具有类似架构的PyTorch模型。
最佳实践建议
-
在操作模型权重前,先分析状态字典中参数的引用关系。
-
对于需要修改权重的操作,优先考虑原地操作(in-place operation)。
-
使用
.data_ptr()方法验证参数的物理内存地址,确保不重复处理相同参数。 -
在联邦学习等需要频繁聚合模型参数的场景中,采用基于内存地址识别的处理方法可以显著减少内存使用和存储空间。
通过这种精细化的权重处理方法,我们不仅解决了检查点文件增大的问题,还提高了模型参数处理的效率和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Finalshell服务器管理软件旧版本下载:服务器管理的利器,兼容旧系统 中兴机顶盒工具集:轻松连接与管理机顶盒 XHS-Downloader项目中的Cookie获取机制解析 LabelShop_GPrinter标签编辑软件:强大的标签制作工具 FluentPython最新版原版高清带书签资源下载:掌握Python编程的不二之选 安卓记账本APP源码:一款便捷的个人财务管理工具 安川SigmaWin+ USB驱动64bitwin10可用下载介绍:连接安川伺服驱动器的桥梁 CUDA-Fortran高效编程实践:解锁高效并行计算的密钥 Avalonia相关文档下载:助力开发者掌握跨平台桌面应用开发 百度地图JavaScriptAPI离线版资源下载:实现网页地图功能无需网络连接
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134