基于open-data-scientist项目的分子溶解度预测模型构建指南
2025-06-29 11:29:58作者:姚月梅Lane
前言:溶解度预测的意义与挑战
在药物研发和化学研究中,分子溶解度是一个至关重要的物性参数。它直接影响药物的生物利用度、配方设计和药效发挥。传统上,溶解度的测定需要耗费大量时间和资源进行实验测量。随着计算化学和机器学习技术的发展,基于分子结构的溶解度预测已成为可能,这为化学研究提供了更高效的解决方案。
项目概述
本项目基于ESOL数据集,包含1,144种有机化合物的实验测量溶解度数据(以log mol/L表示)和对应的SMILES字符串表示。我们的目标是构建机器学习模型,仅从分子结构信息就能准确预测其水溶性。
数据准备与探索
数据集特性
- 样本量:1,144个完整数据点(无缺失值)
- 目标变量范围:-11.6至1.58 log mol/L
- 平均值:-3.06 ± 2.1(标准差)
- 分布特征:近似正态分布,略带左偏
特征工程流程
-
初始特征生成:
- 使用RDKit从SMILES字符串计算217个分子描述符
- 包括物理化学性质、拓扑描述符和电子结构特征
-
特征筛选:
- 去除恒定特征和高度相关特征
- 基于与溶解度的相关性选择前50个最具预测性的特征
-
关键分子描述符:
- MolLogP(辛醇-水分配系数)
- PEOE_VSA6(部分电荷表面积描述符)
- 分子量
- Morgan指纹密度
- BCUT描述符(分子连接性)
模型构建方法论
模型选择策略
我们评估了三种主流的回归方法:
- 随机森林:集成学习方法,通过构建多棵决策树提高预测稳定性
- 梯度提升(Gradient Boosting):逐步优化模型,专注于修正前序模型的错误
- 支持向量回归(SVR):基于核技巧的高维空间回归方法
评估体系
- R²(决定系数):衡量模型解释目标变量方差的能力
- MAE(平均绝对误差):预测值与真实值的平均绝对差异
- RMSE(均方根误差):放大较大误差的评估指标
模型性能与结果分析
性能对比
| 模型类型 | R² | MAE | RMSE |
|---|---|---|---|
| 随机森林 | 0.910 | 0.460 | 0.627 |
| 梯度提升 | 0.917 | 0.452 | 0.600 |
| 支持向量回归 | 0.816 | 0.562 | 0.894 |
关键发现
- 梯度提升模型表现最佳,在所有评估指标上领先
- 所有模型均显著优于数据集中包含的基线ESOL预测
- 分子量和疏水性(MolLogP)是最具预测性的特征
- 模型能很好地捕捉溶解度分布的中心趋势和特殊值
技术实现细节
数据预处理要点
from rdkit import Chem
from rdkit.Chem import Descriptors
def compute_descriptors(smiles):
mol = Chem.MolFromSmiles(smiles)
descriptors = []
# 计算各种分子描述符
descriptors.append(Descriptors.MolLogP(mol))
descriptors.append(Descriptors.MolWt(mol))
# 添加更多描述符计算...
return descriptors
模型训练示例
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
# 划分训练测试集
X_train, X_test, y_train, y_test = train_test_split(features, solubility, test_size=0.2)
# 初始化并训练梯度提升模型
gb_model = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3)
gb_model.fit(X_train, y_train)
# 模型评估
predictions = gb_model.predict(X_test)
应用价值与局限性
实际应用场景
- 药物发现:快速筛选具有理想溶解度的候选药物分子
- 材料设计:预测新型功能材料的溶解性能
- 环境化学:评估有机污染物在水环境中的行为
当前局限性
- 领域适应性:对训练集分布外的分子预测可能不准确
- 结构复杂性:某些复杂分子结构的SMILES解析可能失败
- 解释性挑战:部分分子描述符的化学意义不直观
未来优化方向
-
模型优化:
- 系统性的超参数调优
- 尝试深度学习方法(如图神经网络)
-
特征扩展:
- 引入更多分子表示方法(如分子指纹)
- 结合3D分子构象信息
-
数据增强:
- 整合更大规模、更多样化的化学数据集
- 考虑迁移学习策略
结语
本项目展示了机器学习在化学性质预测中的强大能力,特别是梯度提升模型在溶解度预测任务中的优异表现。这种计算方法为化学研究提供了高效的工具,可以显著加速化合物筛选和研究流程。随着算法和数据的不断进步,计算预测有望成为实验测量的有力补充,推动化学研究的数字化转型。
对于希望复现或扩展本研究的读者,建议从理解分子描述符的化学意义入手,逐步探索不同模型架构的预测性能,最终构建适合特定应用场景的定制化预测系统。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
582
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
374
仓颉编程语言运行时与标准库。
Cangjie
130
387
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205