基于open-data-scientist项目的分子溶解度预测模型构建指南
2025-06-29 13:05:13作者:姚月梅Lane
前言:溶解度预测的意义与挑战
在药物研发和化学研究中,分子溶解度是一个至关重要的物性参数。它直接影响药物的生物利用度、配方设计和药效发挥。传统上,溶解度的测定需要耗费大量时间和资源进行实验测量。随着计算化学和机器学习技术的发展,基于分子结构的溶解度预测已成为可能,这为化学研究提供了更高效的解决方案。
项目概述
本项目基于ESOL数据集,包含1,144种有机化合物的实验测量溶解度数据(以log mol/L表示)和对应的SMILES字符串表示。我们的目标是构建机器学习模型,仅从分子结构信息就能准确预测其水溶性。
数据准备与探索
数据集特性
- 样本量:1,144个完整数据点(无缺失值)
- 目标变量范围:-11.6至1.58 log mol/L
- 平均值:-3.06 ± 2.1(标准差)
- 分布特征:近似正态分布,略带左偏
特征工程流程
-
初始特征生成:
- 使用RDKit从SMILES字符串计算217个分子描述符
- 包括物理化学性质、拓扑描述符和电子结构特征
-
特征筛选:
- 去除恒定特征和高度相关特征
- 基于与溶解度的相关性选择前50个最具预测性的特征
-
关键分子描述符:
- MolLogP(辛醇-水分配系数)
- PEOE_VSA6(部分电荷表面积描述符)
- 分子量
- Morgan指纹密度
- BCUT描述符(分子连接性)
模型构建方法论
模型选择策略
我们评估了三种主流的回归方法:
- 随机森林:集成学习方法,通过构建多棵决策树提高预测稳定性
- 梯度提升(Gradient Boosting):逐步优化模型,专注于修正前序模型的错误
- 支持向量回归(SVR):基于核技巧的高维空间回归方法
评估体系
- R²(决定系数):衡量模型解释目标变量方差的能力
- MAE(平均绝对误差):预测值与真实值的平均绝对差异
- RMSE(均方根误差):放大较大误差的评估指标
模型性能与结果分析
性能对比
| 模型类型 | R² | MAE | RMSE |
|---|---|---|---|
| 随机森林 | 0.910 | 0.460 | 0.627 |
| 梯度提升 | 0.917 | 0.452 | 0.600 |
| 支持向量回归 | 0.816 | 0.562 | 0.894 |
关键发现
- 梯度提升模型表现最佳,在所有评估指标上领先
- 所有模型均显著优于数据集中包含的基线ESOL预测
- 分子量和疏水性(MolLogP)是最具预测性的特征
- 模型能很好地捕捉溶解度分布的中心趋势和特殊值
技术实现细节
数据预处理要点
from rdkit import Chem
from rdkit.Chem import Descriptors
def compute_descriptors(smiles):
mol = Chem.MolFromSmiles(smiles)
descriptors = []
# 计算各种分子描述符
descriptors.append(Descriptors.MolLogP(mol))
descriptors.append(Descriptors.MolWt(mol))
# 添加更多描述符计算...
return descriptors
模型训练示例
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import train_test_split
# 划分训练测试集
X_train, X_test, y_train, y_test = train_test_split(features, solubility, test_size=0.2)
# 初始化并训练梯度提升模型
gb_model = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3)
gb_model.fit(X_train, y_train)
# 模型评估
predictions = gb_model.predict(X_test)
应用价值与局限性
实际应用场景
- 药物发现:快速筛选具有理想溶解度的候选药物分子
- 材料设计:预测新型功能材料的溶解性能
- 环境化学:评估有机污染物在水环境中的行为
当前局限性
- 领域适应性:对训练集分布外的分子预测可能不准确
- 结构复杂性:某些复杂分子结构的SMILES解析可能失败
- 解释性挑战:部分分子描述符的化学意义不直观
未来优化方向
-
模型优化:
- 系统性的超参数调优
- 尝试深度学习方法(如图神经网络)
-
特征扩展:
- 引入更多分子表示方法(如分子指纹)
- 结合3D分子构象信息
-
数据增强:
- 整合更大规模、更多样化的化学数据集
- 考虑迁移学习策略
结语
本项目展示了机器学习在化学性质预测中的强大能力,特别是梯度提升模型在溶解度预测任务中的优异表现。这种计算方法为化学研究提供了高效的工具,可以显著加速化合物筛选和研究流程。随着算法和数据的不断进步,计算预测有望成为实验测量的有力补充,推动化学研究的数字化转型。
对于希望复现或扩展本研究的读者,建议从理解分子描述符的化学意义入手,逐步探索不同模型架构的预测性能,最终构建适合特定应用场景的定制化预测系统。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.53 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
850
440
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19