使用jQuery.pwstrength.bootstrap实现基于zxcvbn的密码强度检测
项目概述
jQuery.pwstrength.bootstrap是一个基于jQuery和Bootstrap的密码强度检测插件,它能够实时评估用户输入密码的强度,并提供可视化反馈。本文重点介绍如何结合zxcvbn算法实现更智能的密码强度检测。
zxcvbn算法简介
zxcvbn是由Dropbox开发的开源密码强度估算引擎,它采用模式匹配和保守估计的方式,能够识别常见密码模式(如字典单词、重复字符、键盘序列等),并给出更符合实际的强度评估。
功能实现详解
1. 基本HTML结构
首先需要构建包含密码输入框和相关用户信息的基本表单结构:
<div class="container">
<form role="form">
<div class="row" id="pwd-container">
<div class="col-sm-4">
<div class="form-group">
<label for="username">Username</label>
<input type="text" class="form-control" id="username" placeholder="Username">
</div>
<!-- 其他用户信息输入框 -->
<div class="form-group">
<label for="password">Password</label>
<input type="password" class="form-control" id="password" placeholder="Password">
</div>
</div>
<div class="col-sm-6 col-sm-offset-2 my-help-text">
<span class="pwstrength_viewport_progress"></span>
<span class="pwstrength_viewport_verdict"></span>
</div>
</div>
</form>
</div>
2. 初始化密码强度检测
通过JavaScript初始化插件并配置相关参数:
jQuery(document).ready(function () {
var options = {};
options.ui = {
container: "#pwd-container", // 容器选择器
viewports: {
progress: ".pwstrength_viewport_progress", // 进度条显示位置
verdict: ".pwstrength_viewport_verdict" // 强度文字显示位置
}
};
options.common = {
onLoad: function () {
$('#messages').text('Start typing password');
},
zxcvbn: true, // 启用zxcvbn算法
zxcvbnTerms: ['samurai', 'shogun', 'bushido'], // 自定义禁止词汇
userInputs: ['#year', '#familyname'] // 关联用户信息输入框
};
$(':password').pwstrength(options);
});
3. 关键配置参数解析
-
zxcvbn: true
启用zxcvbn算法进行密码强度评估,替代插件自带的简单评估机制。 -
zxcvbnTerms
自定义禁止词汇列表,这些词汇如果出现在密码中会降低密码强度评分。例如示例中的日本文化相关词汇。 -
userInputs
指定与用户相关的输入框ID,这些字段的值会被zxcvbn算法用于检测密码中是否包含用户个人信息(如生日、姓名等)。
技术优势
-
更智能的评估
zxcvbn算法能识别常见密码模式,比简单的长度和字符类型检查更准确。 -
上下文感知
通过关联用户信息输入框,可以检测密码是否包含用户个人信息,提高安全性。 -
自定义规则
可以定义特定词汇黑名单,防止用户使用与业务相关的弱密码。
实际应用建议
-
合理设置禁止词汇
根据业务特点设置相关禁止词汇,如电商平台可禁止"shop"、"buy"等词汇。 -
平衡用户体验
密码强度要求应根据业务安全级别调整,避免过于严格导致用户流失。 -
提供明确反馈
除了强度指示器,还应给出具体的改进建议,如"避免使用个人信息"等。
总结
通过jQuery.pwstrength.bootstrap结合zxcvbn算法,开发者可以快速实现专业级的密码强度检测功能,既保证了安全性,又提供了良好的用户体验。这种方案特别适合需要较高安全标准的Web应用,如金融、医疗等领域。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00