使用jQuery.pwstrength.bootstrap实现基于zxcvbn的密码强度检测
项目概述
jQuery.pwstrength.bootstrap是一个基于jQuery和Bootstrap的密码强度检测插件,它能够实时评估用户输入密码的强度,并提供可视化反馈。本文重点介绍如何结合zxcvbn算法实现更智能的密码强度检测。
zxcvbn算法简介
zxcvbn是由Dropbox开发的开源密码强度估算引擎,它采用模式匹配和保守估计的方式,能够识别常见密码模式(如字典单词、重复字符、键盘序列等),并给出更符合实际的强度评估。
功能实现详解
1. 基本HTML结构
首先需要构建包含密码输入框和相关用户信息的基本表单结构:
<div class="container">
<form role="form">
<div class="row" id="pwd-container">
<div class="col-sm-4">
<div class="form-group">
<label for="username">Username</label>
<input type="text" class="form-control" id="username" placeholder="Username">
</div>
<!-- 其他用户信息输入框 -->
<div class="form-group">
<label for="password">Password</label>
<input type="password" class="form-control" id="password" placeholder="Password">
</div>
</div>
<div class="col-sm-6 col-sm-offset-2 my-help-text">
<span class="pwstrength_viewport_progress"></span>
<span class="pwstrength_viewport_verdict"></span>
</div>
</div>
</form>
</div>
2. 初始化密码强度检测
通过JavaScript初始化插件并配置相关参数:
jQuery(document).ready(function () {
var options = {};
options.ui = {
container: "#pwd-container", // 容器选择器
viewports: {
progress: ".pwstrength_viewport_progress", // 进度条显示位置
verdict: ".pwstrength_viewport_verdict" // 强度文字显示位置
}
};
options.common = {
onLoad: function () {
$('#messages').text('Start typing password');
},
zxcvbn: true, // 启用zxcvbn算法
zxcvbnTerms: ['samurai', 'shogun', 'bushido'], // 自定义禁止词汇
userInputs: ['#year', '#familyname'] // 关联用户信息输入框
};
$(':password').pwstrength(options);
});
3. 关键配置参数解析
-
zxcvbn: true
启用zxcvbn算法进行密码强度评估,替代插件自带的简单评估机制。 -
zxcvbnTerms
自定义禁止词汇列表,这些词汇如果出现在密码中会降低密码强度评分。例如示例中的日本文化相关词汇。 -
userInputs
指定与用户相关的输入框ID,这些字段的值会被zxcvbn算法用于检测密码中是否包含用户个人信息(如生日、姓名等)。
技术优势
-
更智能的评估
zxcvbn算法能识别常见密码模式,比简单的长度和字符类型检查更准确。 -
上下文感知
通过关联用户信息输入框,可以检测密码是否包含用户个人信息,提高安全性。 -
自定义规则
可以定义特定词汇黑名单,防止用户使用与业务相关的弱密码。
实际应用建议
-
合理设置禁止词汇
根据业务特点设置相关禁止词汇,如电商平台可禁止"shop"、"buy"等词汇。 -
平衡用户体验
密码强度要求应根据业务安全级别调整,避免过于严格导致用户流失。 -
提供明确反馈
除了强度指示器,还应给出具体的改进建议,如"避免使用个人信息"等。
总结
通过jQuery.pwstrength.bootstrap结合zxcvbn算法,开发者可以快速实现专业级的密码强度检测功能,既保证了安全性,又提供了良好的用户体验。这种方案特别适合需要较高安全标准的Web应用,如金融、医疗等领域。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









