SRPC 开源项目教程
2024-08-07 13:29:54作者:温艾琴Wonderful
项目介绍
SRPC 是一个基于 C++ Workflow 的企业级 RPC 系统,由搜狗公司开发。它处理着每天数十亿次的请求,涵盖搜索、推荐、广告系统和其他类型的服务。SRPC 是一个高性能、低延迟、轻量级的 RPC 系统,支持多种 RPC 协议(如 SRPC、bRPC、Thrift、tRPC)和多种操作系统(如 Linux、MacOS、Windows)。此外,它还支持多种 IDL 格式(如 Protobuf、Thrift)和数据格式(如 Json),并包含面向切面编程(AOP)模块,可以向多种云原生系统(如 OpenTelemetry)报告指标和追踪信息。
项目快速启动
安装
SRPC 已经打包为 Debian 和 Fedora 系统,因此可以从源代码安装或从系统包安装。以下是从源代码安装的步骤:
# 克隆项目仓库
git clone https://github.com/sogou/srpc.git
# 进入项目目录
cd srpc
# 编译安装
mkdir build && cd build
cmake ..
make
sudo make install
示例代码
以下是一个简单的 SRPC 客户端和服务器示例代码:
服务器端
#include <srpc/srpc.h>
class MyServiceImpl : public MyService {
public:
void Echo(EchoRequest *request, EchoResponse *response, RPCContext *ctx) override {
response->set_message("Hello " + request->name());
}
};
int main() {
srpc::SRPCServer server;
MyServiceImpl impl;
server.add_service(&impl);
server.start(8080);
return 0;
}
客户端端
#include <srpc/srpc.h>
int main() {
srpc::SRPCClient client("127.0.0.1", 8080);
MyService_Stub stub(&client);
EchoRequest request;
request.set_name("World");
EchoResponse response;
RPCContext ctx;
stub.Echo(&request, &response, &ctx);
std::cout << response.message() << std::endl;
return 0;
}
应用案例和最佳实践
SRPC 在搜狗公司的几乎所有在线服务中都有应用,每天处理数十亿次请求。它的高性能和低延迟特性使其成为构建大规模分布式系统的理想选择。以下是一些最佳实践:
- 协议选择:根据具体需求选择合适的 RPC 协议(如 SRPC、bRPC、Thrift)。
- 性能优化:使用 AOP 模块进行性能监控和优化,向 OpenTelemetry 报告指标和追踪信息。
- 跨语言通信:利用 HTTP+JSON 协议与其他语言编写的客户端或服务器进行通信。
典型生态项目
SRPC 与 C++ Workflow 紧密结合,可以与 Workflow 系列的其他组件(如名称服务、上游组件)完美兼容。此外,SRPC 还支持向 OpenTelemetry 报告追踪和指标信息,与 Prometheus 等监控系统集成,构建完整的云原生生态系统。
通过以上教程,您可以快速了解和使用 SRPC 开源项目,构建高性能的分布式系统。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5