Polars并行查询中的死锁问题分析与解决方案
2025-05-04 10:09:12作者:鲍丁臣Ursa
概述
在使用Polars数据处理库时,开发人员可能会遇到一个特定的并发问题:当执行包含水平连接(hconcat)和过滤(filter)操作的复杂查询时,程序可能会在多次迭代后陷入死锁状态。这个问题特别容易出现在需要处理多个数据帧并行连接的情况下。
问题现象
当开发人员编写类似以下模式的代码时,问题就会出现:
import polars as pl
def concat_multiple_frames(frame, n_frames):
frames = [
frame
.filter(pl.lit(True)) # 看似无害的过滤操作
.select(pl.lit(0).alias(str(i)))
for i in range(n_frames)
]
return pl.concat(frames, how="horizontal")
frame = pl.LazyFrame(dict(x=[0], y=[0]))
output = concat_multiple_frames(frame, n_frames=10)
output.collect() # 此处可能发生死锁
这个问题的几个关键特征包括:
- 必须使用水平连接(hconcat)操作
- 连接的数据帧数量需要达到一定阈值(通常大于5个)
- 数据帧中包含多个列(即使这些列并未在查询中使用)
- 查询中包含过滤操作(即使过滤条件始终为True)
问题根源
经过深入分析,这个问题与Polars的并行执行机制有关。Polars默认会尝试优化查询执行计划,包括:
- 公共子计划消除(comm_subplan_elim)
- 并行执行水平连接操作
当这些优化与特定的查询结构相互作用时,可能会导致线程间的资源竞争和死锁。特别是在以下情况下:
- 多个工作线程尝试同时访问共享资源
- 查询优化器生成的执行计划存在循环依赖
- 线程同步机制出现竞争条件
解决方案
目前有几种可行的解决方案:
- 禁用并行执行:在concat操作中设置parallel=False
pl.concat(frames, how="horizontal", parallel=False)
- 使用垂直连接:如果业务逻辑允许,改用垂直连接(vconcat)
pl.concat(frames, how="vertical")
- 简化数据帧结构:减少数据帧中的列数
frame = pl.LazyFrame(dict(x=[0])) # 只保留必要的列
- 禁用查询优化:在collect调用中设置comm_subplan_elim=False
output.collect(comm_subplan_elim=False)
- 减少连接的数据帧数量:如果可能,将n_frames控制在较低水平
最佳实践建议
为了避免类似问题,建议开发人员:
- 在开发阶段对包含复杂并行操作的查询进行充分测试
- 对于简单的查询,可以考虑禁用不必要的优化和并行
- 监控查询执行时间,异常延迟可能是死锁的前兆
- 保持Polars版本更新,关注相关问题的修复进展
总结
Polars作为高性能数据处理库,其并行执行机制在大多数情况下能显著提升性能。然而,在特定查询模式下可能会出现死锁问题。理解这些问题模式并掌握相应的解决方案,可以帮助开发人员构建更健壮的数据处理流程。随着Polars的持续发展,这些问题有望在未来的版本中得到更好的解决。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218