TruLens项目中使用Groundedness评估RAG应用时的常见错误解析
2025-07-01 15:42:51作者:平淮齐Percy
概述
在利用TruLens框架评估检索增强生成(RAG)应用时,开发者经常会遇到关于Groundedness评估功能的配置问题。本文将通过一个典型错误案例,深入分析问题原因并提供正确的解决方案。
问题现象
开发者在使用TruLens的Groundedness功能评估RAG应用时,遇到了TypeError: Feedback.__init__() got an unexpected keyword argument 'groundedness_provider'
的错误提示。这个错误表明在初始化Feedback类时传入了一个不被接受的参数。
错误原因分析
这个错误通常由以下原因导致:
- API版本不匹配:开发者可能参考了旧版文档,而当前使用的TruLens版本已经更新了API接口
- 初始化方式变更:新版本中Groundedness的初始化方式已经简化,不再需要单独创建Groundedness实例
- 参数传递方式改变:反馈函数的配置方式在新版本中更加直接
正确解决方案
在新版TruLens中,评估RAG应用的推荐方式如下:
import numpy as np
from trulens.apps.llamaindex import TruLlama
from trulens.core import Feedback
from trulens.providers.openai import OpenAI
# 初始化OpenAI提供者
provider = OpenAI()
# 选择用于反馈的上下文
context = TruLlama.select_context(query_engine)
# 定义Groundedness反馈函数
f_groundedness = (
Feedback(
provider.groundedness_measure_with_cot_reasons,
name="Groundedness"
)
.on(context.collect()) # 将上下文块收集到列表中
.on_output()
)
# 定义问题/答案相关性反馈函数
f_answer_relevance = Feedback(
provider.relevance_with_cot_reasons,
name="Answer Relevance"
).on_input_output()
# 定义问题/上下文块相关性反馈函数
f_context_relevance = (
Feedback(
provider.context_relevance_with_cot_reasons,
name="Context Relevance"
)
.on_input()
.on(context)
.aggregate(np.mean)
)
关键改进点
- 简化初始化流程:不再需要单独创建Groundedness实例,直接使用provider提供的方法
- 更清晰的上下文处理:使用
context.collect()
方法显式处理上下文块 - 更直观的反馈链式调用:通过链式调用清晰地表达反馈函数的应用范围
最佳实践建议
- 版本一致性:确保代码实现与所参考的文档版本一致
- 逐步验证:先构建简单的反馈函数,验证通过后再添加复杂逻辑
- 上下文明确:清晰地定义每个反馈函数应用的上下文范围
- 聚合策略:根据评估需求选择合适的聚合方法(如np.mean)
总结
TruLens框架在不断演进中优化了API设计,使RAG应用的评估更加简洁高效。开发者遇到类似初始化错误时,应首先检查API版本兼容性,并参考最新的官方文档实现方式。通过本文提供的解决方案,开发者可以顺利构建基于Groundedness的RAG评估流程,全面检测生成内容的真实性和相关性。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133