Arrow Ballista 内存泄漏问题分析与修复
2025-07-09 07:45:58作者:伍希望
问题背景
在分布式查询引擎 Arrow Ballista 项目中,开发者发现了一个潜在的内存泄漏问题。该问题与查询会话(Session)的管理机制有关,具体表现为会话对象在查询结束后未能被正确清理,导致内存使用量持续增长。
问题现象
开发者通过在 InMemoryJobState.create_session 方法中添加调试输出,观察到以下现象:
- 每次创建新会话时,会话集合的大小都会增加
- 即使查询已经完成并且触发了
JobDataClean事件,会话集合的大小也不会减少 - 代码中没有发现清理旧会话的逻辑
技术分析
在 Ballista 的架构中,InMemoryJobState 负责管理查询会话的状态。每个查询都会创建一个新的会话上下文(SessionContext),这些上下文被存储在内存中的会话集合里。
问题的核心在于会话生命周期管理不完整:
- 会话创建:当新查询到达时,系统会通过
create_session方法创建新会话,并将其添加到self.sessions集合中 - 会话清理:虽然查询完成后会触发清理事件,但清理逻辑没有包含对会话对象的处理
- 内存增长:由于没有清理机制,会话对象会一直驻留在内存中,导致内存泄漏
解决方案
项目维护者提出了两个相关的修复方案:
- 优化会话缓存:第一个方案尝试改进会话上下文的缓存机制,使其能够更有效地管理内存
- 移除会话缓存:第二个更彻底的解决方案是直接移除了会话上下文的缓存机制,从根本上避免了内存泄漏的可能性
技术影响
这种内存泄漏问题在长期运行的分布式查询系统中尤为严重:
- 资源消耗:随着时间推移,未清理的会话会消耗越来越多的内存
- 系统稳定性:可能导致调度器(Scheduler)因内存不足而崩溃
- 性能下降:内存压力增大会影响整体查询性能
最佳实践建议
对于类似分布式系统的开发者,建议:
- 明确资源生命周期:对所有可能占用资源的对象,都应明确定义其创建和销毁的时机
- 定期资源审计:实现定期检查机制,确保没有资源泄漏
- 压力测试:在开发阶段进行长时间运行的测试,模拟生产环境的内存使用情况
- 监控机制:实现内存使用监控,及时发现潜在的内存问题
总结
Arrow Ballista 项目通过社区协作快速识别并修复了这个内存泄漏问题,体现了开源项目的优势。对于分布式系统开发者而言,资源管理始终是需要重点关注的问题,特别是在涉及长时间运行和大量并发查询的场景下。通过这次问题的解决,Ballista 的稳定性和可靠性得到了进一步提升。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
643
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
248
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
100
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873