Romm游戏管理平台3.10.0版本深度解析
Romm是一款开源的复古游戏管理平台,它能够帮助游戏爱好者高效地组织和管理自己的游戏收藏库。作为一个现代化的游戏管理解决方案,Romm提供了游戏元数据管理、多平台支持、用户权限控制等核心功能,特别适合复古游戏爱好者和收藏家使用。
重大功能更新
RetroAchievements深度集成
3.10.0版本最引人注目的新特性是与RetroAchievements平台的深度集成。RetroAchievements是一个为复古游戏提供成就系统的平台,类似于现代游戏平台中的成就系统。通过这项集成,用户现在可以直接在Romm中查看自己通过其他设备获得的游戏成就。
要启用此功能,用户需要在环境变量中设置从RetroAchievements账户设置页面获取的"Web API Key"。值得注意的是,升级后必须运行一次部分元数据扫描,以更新库中的RA ID。目前Romm与EmulatorJS配合使用时还不支持直接获取成就。
可访问性改进
开发团队已经开始着手长期的可访问性改进计划。虽然这项工作仍在进行中,但用户现在已经可以使用屏幕阅读器等辅助技术访问部分应用功能。这一改进体现了Romm团队对包容性设计的承诺,确保所有用户都能享受游戏管理的乐趣。
邀请链接功能
新版本引入了邀请链接功能,服务器管理员可以生成预设角色的邀请链接并发送给用户,允许他们自行注册。这一功能特别适合那些没有设置身份验证提供程序(如Authelia或Authentik)的服务器所有者,大大简化了新用户的上手流程。
服务器统计视图
管理员现在可以通过新的统计视图获取关于游戏库的详细数据,例如按平台分类的存储空间使用情况。这些统计信息为库管理提供了有价值的洞察,帮助用户更好地了解和管理自己的游戏收藏。
实用功能增强
除了上述重大更新外,3.10.0版本还包含了一系列实用的功能改进:
- 新增"显示可玩游戏"筛选器,帮助用户快速找到可以直接游玩的游戏
- 添加了密码恢复选项,提高了账户安全性
- 支持按平台分组选项,优化了游戏库的浏览体验
- 在删除对话框中增加了"删除时排除"选项,提供了更灵活的删除控制
- 支持按文件大小排序游戏,方便管理大型游戏文件
- 为游戏卡片添加了可选的3D倾斜效果,增强了视觉体验
性能优化与问题修复
开发团队在此版本中进行了多项性能优化和问题修复:
- 改进了截图更新机制,确保保存游戏时能正确更新截图
- 通过优化显著降低了内存使用量
- 修复了当图像读取失败时扫描意外中止的问题
- 重构了资源文件系统路径,提高了系统稳定性
- 修复了列表中隐藏游戏显示不正确的问题
- 解决了iOS设备全屏播放的问题
- 修正了OpenIDHandler中的用户创建逻辑
技术架构改进
在技术架构方面,3.10.0版本也进行了多项改进:
- 统一了uvicorn日志格式,便于问题排查和系统监控
- 升级了前端构建工具vite到6.3.4版本
- 将tornado框架从6.4.2升级到6.5.1,提高了系统稳定性和安全性
总结
Romm 3.10.0版本通过RetroAchievements集成、可访问性改进、邀请链接功能和服务器统计视图等重大更新,显著提升了游戏管理体验。同时,一系列实用功能增强和问题修复使平台更加稳定和易用。这些改进体现了Romm团队对用户体验的持续关注和对技术创新的追求,为复古游戏爱好者提供了更加强大和便捷的游戏管理解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00