推荐文章:为图神经网络赋能——数据增强库
在这个数据驱动的时代,图神经网络(GNN)在处理复杂网络结构信息时展现出了强大的潜力。然而,有效利用有限的训练数据仍然是一个挑战。为此,我们非常荣幸地向您推荐一款创新的开源项目——Data Augmentation for Graph Neural Networks。这个项目源自AAAI'2021的一篇论文,致力于通过数据增强提升GNN模型的学习效果。
项目介绍
Data Augmentation for Graph Neural Networks 提供了一种新的策略来扩展图数据,从而提高GNN的泛化能力和学习性能。该项目提供了一系列算法,如GAugO和GAugM,旨在从节点连接性和特征两方面对图数据进行智能增强。它的目标是帮助研究人员和开发者克服小样本学习的问题,尤其是在社交网络、生物信息学和推荐系统等领域的应用中。
项目技术分析
该项目基于Python 3.7.6开发,确保了与当前主流开发环境的兼容性。它依赖于一系列常见数据科学库,例如NumPy、Pandas和TensorFlow,以及优化工具Optuna。为了方便用户,所有必需的依赖项都列在requirements.txt文件中,只需一行命令即可安装。
核心功能包括使用Optuna进行超参数搜索的脚本optuna_[method].py,以及能够加载最佳参数并执行训练的train_[method].py。例如,要重现针对Cora数据集的GAugO方法与GCN的结果,只需运行相应的训练脚本:
python train_GAugO.py --dataset cora --gnn gcn --gpu 0
应用场景
Data Augmentation for Graph Neural Networks 的应用场景广泛,特别是在数据稀少的情况下,可以显著提升GNN的表现。它适用于任何需要处理图数据的任务,如:
- 社交网络分析:预测用户行为,检测异常社区。
- 生物信息学:蛋白质相互作用网络的聚类或药物发现。
- 推荐系统:通过对用户行为和兴趣的建模,生成更准确的个性化推荐。
项目特点
- 易用性:清晰的代码结构和详细文档使得快速上手成为可能。
- 可复现性:提供最佳参数配置文件,确保实验结果可重复。
- 灵活性:支持多种数据增强方法和不同的GNN架构。
- 全面性:不仅关注节点特征的增强,还重视边的随机概率,以模拟真实世界的不确定性。
总的来说,Data Augmentation for Graph Neural Networks 是一个强大且实用的工具,无论您是学术研究者还是行业从业者,都能从中受益,提升您的图数据分析能力。现在就加入,开启您的数据增强之旅吧!
引用该项目的论文:
@inproceedings{zhao2021data,
title={Data Augmentation for Graph Neural Networks},
author={Zhao, Tong and Liu, Yozen and Neves, Leonardo and Woodford, Oliver and Jiang, Meng and Shah, Neil},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={35},
number={12},
pages={11015--11023},
year={2021}
}
项目地址:https://github.com/zhao-tong/GAug
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00