Apache Flink 训练项目教程
2024-09-02 01:29:08作者:俞予舒Fleming
1、项目介绍
Apache Flink 是一个开源的流处理框架,支持高吞吐量、低延迟以及复杂的事件处理。flink-training 项目是 Apache Flink 官方提供的训练资源,包含了一系列的编程练习、测试和参考解决方案。通过这个项目,开发者可以学习和实践 Flink 的各种功能和应用场景。
2、项目快速启动
克隆项目
首先,克隆 flink-training 项目到本地:
git clone https://github.com/apache/flink-training.git
cd flink-training
构建项目
使用 Gradle 构建项目:
./gradlew test shadowJar
导入项目
将项目导入到你的 IDE 中,例如 IntelliJ IDEA 或 Eclipse。
运行示例
以下是一个简单的 Flink 程序示例,计算单词出现的次数:
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
public class WordCount {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> text = env.fromElements(
"Hello World",
"Hello Flink",
"Hello Apache Flink"
);
DataStream<Tuple2<String, Integer>> wordCounts = text
.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
@Override
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
for (String word : value.split(" ")) {
out.collect(new Tuple2<>(word, 1));
}
}
})
.keyBy(0)
.sum(1);
wordCounts.print();
env.execute("Word Count Example");
}
}
3、应用案例和最佳实践
应用案例
- 实时数据分析:使用 Flink 处理实时数据流,进行实时分析和报告。
- 事件驱动应用:构建事件驱动的应用程序,处理复杂的事件序列。
- 数据管道:构建数据管道,将数据从一个系统传输到另一个系统,并进行实时处理。
最佳实践
- 状态管理:合理使用 Flink 的状态管理功能,确保数据处理的准确性和可靠性。
- 容错处理:配置 Flink 的容错机制,确保在节点故障时数据处理的连续性。
- 资源优化:根据实际需求调整 Flink 的资源配置,优化性能和成本。
4、典型生态项目
- Flink SQL:使用 SQL 查询和处理数据流,简化开发流程。
- Flink ML:集成机器学习库,进行实时数据分析和预测。
- Flink CDC:使用变更数据捕获(CDC)功能,实时同步数据库变更。
通过这些模块的学习和实践,开发者可以全面掌握 Apache Flink 的使用和开发技巧,构建高效、可靠的流处理应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178