Apache Flink 训练项目教程
2024-09-02 20:22:51作者:俞予舒Fleming
1、项目介绍
Apache Flink 是一个开源的流处理框架,支持高吞吐量、低延迟以及复杂的事件处理。flink-training 项目是 Apache Flink 官方提供的训练资源,包含了一系列的编程练习、测试和参考解决方案。通过这个项目,开发者可以学习和实践 Flink 的各种功能和应用场景。
2、项目快速启动
克隆项目
首先,克隆 flink-training 项目到本地:
git clone https://github.com/apache/flink-training.git
cd flink-training
构建项目
使用 Gradle 构建项目:
./gradlew test shadowJar
导入项目
将项目导入到你的 IDE 中,例如 IntelliJ IDEA 或 Eclipse。
运行示例
以下是一个简单的 Flink 程序示例,计算单词出现的次数:
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
public class WordCount {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> text = env.fromElements(
"Hello World",
"Hello Flink",
"Hello Apache Flink"
);
DataStream<Tuple2<String, Integer>> wordCounts = text
.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
@Override
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
for (String word : value.split(" ")) {
out.collect(new Tuple2<>(word, 1));
}
}
})
.keyBy(0)
.sum(1);
wordCounts.print();
env.execute("Word Count Example");
}
}
3、应用案例和最佳实践
应用案例
- 实时数据分析:使用 Flink 处理实时数据流,进行实时分析和报告。
- 事件驱动应用:构建事件驱动的应用程序,处理复杂的事件序列。
- 数据管道:构建数据管道,将数据从一个系统传输到另一个系统,并进行实时处理。
最佳实践
- 状态管理:合理使用 Flink 的状态管理功能,确保数据处理的准确性和可靠性。
- 容错处理:配置 Flink 的容错机制,确保在节点故障时数据处理的连续性。
- 资源优化:根据实际需求调整 Flink 的资源配置,优化性能和成本。
4、典型生态项目
- Flink SQL:使用 SQL 查询和处理数据流,简化开发流程。
- Flink ML:集成机器学习库,进行实时数据分析和预测。
- Flink CDC:使用变更数据捕获(CDC)功能,实时同步数据库变更。
通过这些模块的学习和实践,开发者可以全面掌握 Apache Flink 的使用和开发技巧,构建高效、可靠的流处理应用。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881