COLMAP/Glomap项目中基础矩阵计算的潜在问题分析
引言
在多视图几何计算中,基础矩阵(Fundamental Matrix)和本质矩阵(Essential Matrix)是两个核心概念。它们在计算机视觉的三维重建、相机姿态估计等任务中扮演着重要角色。本文针对COLMAP/Glomap项目中的一个潜在计算问题进行分析,探讨基础矩阵的正确推导方式。
基础矩阵与本质矩阵的关系
基础矩阵F和本质矩阵E之间存在明确的数学关系。本质矩阵描述了两个相机之间的纯几何关系,而基础矩阵则考虑了相机的内参。它们之间的转换关系可以表示为:
F = K₂⁻ᵀ * E * K₁⁻¹
其中K₁和K₂分别是两个相机的内参矩阵。这个公式的物理意义是:本质矩阵E在归一化坐标系下描述了两视图关系,而基础矩阵F则将这种关系转换到了像素坐标系。
问题发现
在Glomap项目的实现中,FundamentalFromMotionAndCameras
函数负责从相机运动和相机内参计算基础矩阵。当前实现为:
F = K₁⁻ᵀ * E * K₂⁻¹
这与理论推导的公式顺序相反。当pose参数表示相机2相对于相机1的变换(T_cam2_from_cam1)时,正确的计算顺序应该是:
F = K₂⁻ᵀ * E * K₁⁻¹
数学推导验证
让我们从基本原理出发验证这一关系:
-
对于一对匹配点x₁和x₂,在归一化坐标系下有: x₂ᵀ * E * x₁ = 0
-
像素坐标与归一化坐标的关系为: x₁ = K₁ * X₁ x₂ = K₂ * X₂ 其中X₁和X₂是归一化坐标
-
将2代入1得: (K₂ * X₂)ᵀ * F * (K₁ * X₁) = 0 => X₂ᵀ * (K₂ᵀ * F * K₁) * X₁ = 0
-
对比1和3可得: E = K₂ᵀ * F * K₁ => F = K₂⁻ᵀ * E * K₁⁻¹
这一推导清晰地展示了基础矩阵的正确计算方式。
影响分析
如果基础矩阵计算顺序错误,会导致:
- 极线约束计算不准确
- 三角化结果偏差
- 后续的相机姿态估计和三维重建精度下降
特别是在大基线或广角相机情况下,这种误差会被放大。
正确实现建议
基于上述分析,建议将函数实现修改为:
void FundamentalFromMotionAndCameras(const Camera& camera1,
const Camera& camera2,
const Rigid3d& pose,
Eigen::Matrix3d* F) {
Eigen::Matrix3d E;
EssentialFromMotion(pose, &E);
*F = camera2.GetK().transpose().inverse() * E * camera1.GetK().inverse();
}
结论
在多视图几何计算中,数学公式的严格实现至关重要。本文分析了Glomap项目中基础矩阵计算的潜在问题,通过数学推导验证了正确的计算顺序,并讨论了错误实现可能带来的影响。正确的矩阵顺序保证了极线几何关系的准确性,是后续三维重建任务的基础。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
项目优选









