AnimatedDrawings项目Docker构建问题解决方案
2025-05-18 16:13:21作者:段琳惟
问题背景
在使用AnimatedDrawings项目进行Docker构建时,用户遇到了网络连接问题。具体表现为在构建过程中尝试从GitHub下载模型文件时连接被拒绝,错误信息显示无法连接到objects.githubusercontent.com的443端口。
问题分析
这个问题通常发生在以下几种情况下:
- 用户处于特殊网络环境中,导致网络连接不稳定或被限制
- GitHub的CDN节点在某些地区访问受限
- 本地网络配置存在问题
在Docker构建过程中,直接从GitHub下载依赖文件是一种常见做法,但当网络环境不理想时,这种依赖外部网络资源的构建方式就会变得不可靠。
解决方案
方法一:直接下载模型文件
用户提出了一个有效的解决方案:将模型文件预先下载到本地,然后通过COPY指令将其复制到Docker镜像中。具体步骤如下:
-
手动下载两个模型文件:
- drawn_humanoid_detector.mar
- drawn_humanoid_pose_estimator.mar
-
将这些文件放置在本地目录中,例如
model-store/
-
修改Dockerfile,将原来的wget下载指令替换为COPY指令:
RUN mkdir -p /home/torchserve/model-store
COPY model-store /home/torchserve/model-store
COPY config.properties /home/torchserve/config.properties
方法二:使用国内镜像源
如果用户仍然希望保持从网络下载的方式,可以考虑:
- 配置Docker使用国内镜像源
- 设置网络代理(如果确实需要使用特殊网络环境)
- 使用GitHub的备用下载地址
方法三:构建时重试机制
在Dockerfile中添加重试逻辑,例如:
RUN mkdir -p /home/torchserve/model-store && \
(wget https://github.com/.../drawn_humanoid_detector.mar -P /home/torchserve/model-store/ || \
wget https://github.com/.../drawn_humanoid_detector.mar -P /home/torchserve/model-store/)
最佳实践建议
-
离线构建:对于依赖大型模型文件的项目,推荐采用离线构建方式,将所需资源预先下载到本地。
-
分层构建:将模型文件作为单独的层构建,这样在模型更新时只需重新构建这一层。
-
构建缓存:合理利用Docker构建缓存,避免每次构建都重新下载依赖。
-
错误处理:在Dockerfile中添加适当的错误处理和重试逻辑,提高构建的鲁棒性。
总结
在容器化部署过程中,网络依赖是一个常见痛点。通过将外部资源本地化,不仅可以解决网络问题,还能提高构建的可靠性和可重复性。AnimatedDrawings项目的这个案例展示了如何通过简单的Dockerfile修改,将网络依赖转化为本地依赖,从而确保构建过程在各种网络环境下都能顺利完成。
对于类似的项目,开发者应当根据实际环境和需求,选择最适合的资源管理策略,平衡构建的便利性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8