SQLGlot项目中的PostgreSQL DISTINCT ON子句解析问题分析
在SQL解析和转换工具SQLGlot中,最近发现了一个关于PostgreSQL特有语法DISTINCT ON子句的解析问题。这个问题涉及到SQL语句的列引用解析和限定(qualification)过程,值得数据库开发者和SQL工具开发者深入了解。
PostgreSQL的DISTINCT ON特性
PostgreSQL的DISTINCT ON是一个独特的语法扩展,它允许用户基于指定列或表达式选择结果集中的唯一行。与标准SQL中的DISTINCT不同,DISTINCT ON可以更精确地控制去重逻辑。根据PostgreSQL官方文档,DISTINCT ON表达式的解析规则与ORDER BY子句相同,可以引用输出列的名称、序号或输入列的值。
问题现象
在SQLGlot中,当尝试对包含DISTINCT ON的PostgreSQL查询进行限定(qualify)操作时,出现了以下问题:
- 对于查询
SELECT DISTINCT ON (new_col) t1.col1 AS new_col FROM table1 AS t1,限定后错误地将new_col解析为t1.new_col,而实际上new_col是输出列的别名 - 当提供schema进行验证时,会抛出"Column could not be resolved"异常
- 与
ORDER BY子句的行为不一致,后者能正确处理列别名引用
技术分析
问题的核心在于SQLGlot的限定器(qualifier)没有正确处理DISTINCT ON子句中的列引用类型。在PostgreSQL中,DISTINCT ON子句可以引用:
- 输出列的序号(如1)
- 输出列的别名(如new_col)
- 输入列的直接引用(如t1.col1或col1)
SQLGlot最初将这些引用都处理为列引用(Column),而实际上对于别名引用应该处理为标识符(Identifier)。这与ORDER BY子句的行为形成了不一致。
解决方案
经过多次讨论和验证,最终确定了以下解决方案:
- 修改限定器,使
DISTINCT ON子句的解析规则与ORDER BY保持一致 - 正确处理三种引用方式:
- 序号引用保持原样
- 别名引用转换为标识符
- 列引用进行正确的限定
- 确保在schema验证时不会错误地抛出异常
实现细节
在具体实现上,解决方案涉及:
- 在
_expand_distinct_on函数中,使用与ORDER BY相同的引用扩展逻辑 - 修改
Scope类的columns属性处理,将DISTINCT加入排除列表 - 确保位置引用(如1)和别名引用(如new_col)都能正确解析
实际影响
这一修复使得SQLGlot能够正确处理以下各种DISTINCT ON用例:
-- 使用输出列序号
SELECT DISTINCT ON (1) t1.col1 AS new_col FROM table1 t1
-- 使用输出列别名
SELECT DISTINCT ON (new_col) t1.col1 AS new_col FROM table1 t1
-- 使用输入列引用
SELECT DISTINCT ON (col1) t1.col1 AS new_col FROM table1 t1
-- 复杂表达式
SELECT DISTINCT ON (max(col)) max(col) AS C, col2 FROM table GROUP BY col2
总结
这个问题展示了SQL解析器中一个有趣的边缘案例,特别是对于PostgreSQL特有的语法扩展。通过深入分析PostgreSQL的文档和实际行为,SQLGlot团队最终实现了与数据库引擎一致的处理逻辑。这对于依赖SQLGlot进行SQL转换和迁移的工具来说是一个重要的改进。
对于SQL工具开发者来说,这个案例也提醒我们:在处理SQL方言扩展时,需要仔细研究官方文档并测试各种边界情况,确保解析行为与数据库引擎保持一致。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00