Bucket4j与Infinispan集成实现分布式限流的技术实践
2025-07-01 02:43:19作者:平淮齐Percy
背景介绍
在现代分布式系统中,限流是保护服务稳定性的重要手段。Bucket4j作为Java领域优秀的限流库,提供了基于令牌桶算法的实现。而Infinispan作为分布式内存数据网格,常被用作分布式缓存解决方案。本文将深入探讨如何将Bucket4j与Infinispan集成,实现分布式环境下的限流功能。
核心问题分析
在集成过程中,开发者常会遇到以下技术难点:
- 序列化问题:直接存储Bucket对象时会出现NotSerializableException异常
- 分布式一致性:多节点环境下需要保证限流计数的准确性
- 性能考量:高频访问场景下的性能优化
解决方案演进
初始方案的问题
开发者最初尝试直接将Bucket对象存入Infinispan缓存:
Bucket bucket = cacheManager.getCache("rate-limiter").get(key, Bucket.class);
if (bucket == null) {
bucket = bucketSupplier.get();
cache.put(key, bucket);
}
这种方案会导致序列化异常,因为Bucket4j的LockFreeBucket类未实现Serializable接口。
官方推荐方案
Bucket4j官方提供了专为Infinispan设计的集成模块bucket4j-infinispan。正确用法是使用ProxyManager抽象层:
@Bean
public ProxyManager<String> infinispanProxyManager(EmbeddedCacheManager cm) {
FunctionalMap.ReadWriteMap<String, byte[]> rwMap = Infinispan.getReadWriteMap(cm.getCache("rate-limit-bucket"));
return new InfinispanProxyManager<>(rwMap);
}
public boolean isRateLimited(String key, ProxyManager<String> proxyManager) {
Bucket bucket = proxyManager.getProxy(key, bucketConfiguration);
return !bucket.tryConsume(1);
}
远程缓存挑战
当需要连接远程Infinispan集群时,情况变得更加复杂。在Bucket4j 8.13.0版本之前,官方未提供对RemoteCache的直接支持。开发者需要自行处理:
- 使用toBinarySnapshot/fromBinarySnapshot进行二进制转换
- 实现分布式锁或事务机制防止竞态条件
- 配置适当的序列化白名单
最佳实践建议
- 版本选择:建议使用Bucket4j 8.13.0+版本,它原生支持RemoteCacheManager
- 配置示例:
@Bean
public ProxyManager<String> remoteCacheProxyManager(RemoteCacheManager cacheManager) {
RemoteCache<String, byte[]> cache = cacheManager.getCache("rate-limit-bucket");
return Bucket4j.extension(Infinispan.class).proxyManagerForCache(cache);
}
- 性能优化:
- 合理设置带宽和刷新周期
- 考虑使用异步消费模式
- 监控缓存命中率和延迟
总结
通过Bucket4j与Infinispan的深度集成,开发者可以构建高性能的分布式限流系统。关键点在于正确使用ProxyManager抽象层,并根据部署环境(嵌入式/远程)选择合适的配置方式。随着Bucket4j的版本迭代,对Infinispan的支持也在不断完善,建议开发者关注最新版本的特性更新。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882