Bucket4j与Infinispan集成实现分布式限流的技术实践
2025-07-01 09:52:13作者:平淮齐Percy
背景介绍
在现代分布式系统中,限流是保护服务稳定性的重要手段。Bucket4j作为Java领域优秀的限流库,提供了基于令牌桶算法的实现。而Infinispan作为分布式内存数据网格,常被用作分布式缓存解决方案。本文将深入探讨如何将Bucket4j与Infinispan集成,实现分布式环境下的限流功能。
核心问题分析
在集成过程中,开发者常会遇到以下技术难点:
- 序列化问题:直接存储Bucket对象时会出现NotSerializableException异常
- 分布式一致性:多节点环境下需要保证限流计数的准确性
- 性能考量:高频访问场景下的性能优化
解决方案演进
初始方案的问题
开发者最初尝试直接将Bucket对象存入Infinispan缓存:
Bucket bucket = cacheManager.getCache("rate-limiter").get(key, Bucket.class);
if (bucket == null) {
bucket = bucketSupplier.get();
cache.put(key, bucket);
}
这种方案会导致序列化异常,因为Bucket4j的LockFreeBucket类未实现Serializable接口。
官方推荐方案
Bucket4j官方提供了专为Infinispan设计的集成模块bucket4j-infinispan。正确用法是使用ProxyManager抽象层:
@Bean
public ProxyManager<String> infinispanProxyManager(EmbeddedCacheManager cm) {
FunctionalMap.ReadWriteMap<String, byte[]> rwMap = Infinispan.getReadWriteMap(cm.getCache("rate-limit-bucket"));
return new InfinispanProxyManager<>(rwMap);
}
public boolean isRateLimited(String key, ProxyManager<String> proxyManager) {
Bucket bucket = proxyManager.getProxy(key, bucketConfiguration);
return !bucket.tryConsume(1);
}
远程缓存挑战
当需要连接远程Infinispan集群时,情况变得更加复杂。在Bucket4j 8.13.0版本之前,官方未提供对RemoteCache的直接支持。开发者需要自行处理:
- 使用toBinarySnapshot/fromBinarySnapshot进行二进制转换
- 实现分布式锁或事务机制防止竞态条件
- 配置适当的序列化白名单
最佳实践建议
- 版本选择:建议使用Bucket4j 8.13.0+版本,它原生支持RemoteCacheManager
- 配置示例:
@Bean
public ProxyManager<String> remoteCacheProxyManager(RemoteCacheManager cacheManager) {
RemoteCache<String, byte[]> cache = cacheManager.getCache("rate-limit-bucket");
return Bucket4j.extension(Infinispan.class).proxyManagerForCache(cache);
}
- 性能优化:
- 合理设置带宽和刷新周期
- 考虑使用异步消费模式
- 监控缓存命中率和延迟
总结
通过Bucket4j与Infinispan的深度集成,开发者可以构建高性能的分布式限流系统。关键点在于正确使用ProxyManager抽象层,并根据部署环境(嵌入式/远程)选择合适的配置方式。随着Bucket4j的版本迭代,对Infinispan的支持也在不断完善,建议开发者关注最新版本的特性更新。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895