Bucket4j与Infinispan集成实现分布式限流的技术实践
2025-07-01 09:52:13作者:平淮齐Percy
背景介绍
在现代分布式系统中,限流是保护服务稳定性的重要手段。Bucket4j作为Java领域优秀的限流库,提供了基于令牌桶算法的实现。而Infinispan作为分布式内存数据网格,常被用作分布式缓存解决方案。本文将深入探讨如何将Bucket4j与Infinispan集成,实现分布式环境下的限流功能。
核心问题分析
在集成过程中,开发者常会遇到以下技术难点:
- 序列化问题:直接存储Bucket对象时会出现NotSerializableException异常
- 分布式一致性:多节点环境下需要保证限流计数的准确性
- 性能考量:高频访问场景下的性能优化
解决方案演进
初始方案的问题
开发者最初尝试直接将Bucket对象存入Infinispan缓存:
Bucket bucket = cacheManager.getCache("rate-limiter").get(key, Bucket.class);
if (bucket == null) {
bucket = bucketSupplier.get();
cache.put(key, bucket);
}
这种方案会导致序列化异常,因为Bucket4j的LockFreeBucket类未实现Serializable接口。
官方推荐方案
Bucket4j官方提供了专为Infinispan设计的集成模块bucket4j-infinispan。正确用法是使用ProxyManager抽象层:
@Bean
public ProxyManager<String> infinispanProxyManager(EmbeddedCacheManager cm) {
FunctionalMap.ReadWriteMap<String, byte[]> rwMap = Infinispan.getReadWriteMap(cm.getCache("rate-limit-bucket"));
return new InfinispanProxyManager<>(rwMap);
}
public boolean isRateLimited(String key, ProxyManager<String> proxyManager) {
Bucket bucket = proxyManager.getProxy(key, bucketConfiguration);
return !bucket.tryConsume(1);
}
远程缓存挑战
当需要连接远程Infinispan集群时,情况变得更加复杂。在Bucket4j 8.13.0版本之前,官方未提供对RemoteCache的直接支持。开发者需要自行处理:
- 使用toBinarySnapshot/fromBinarySnapshot进行二进制转换
- 实现分布式锁或事务机制防止竞态条件
- 配置适当的序列化白名单
最佳实践建议
- 版本选择:建议使用Bucket4j 8.13.0+版本,它原生支持RemoteCacheManager
- 配置示例:
@Bean
public ProxyManager<String> remoteCacheProxyManager(RemoteCacheManager cacheManager) {
RemoteCache<String, byte[]> cache = cacheManager.getCache("rate-limit-bucket");
return Bucket4j.extension(Infinispan.class).proxyManagerForCache(cache);
}
- 性能优化:
- 合理设置带宽和刷新周期
- 考虑使用异步消费模式
- 监控缓存命中率和延迟
总结
通过Bucket4j与Infinispan的深度集成,开发者可以构建高性能的分布式限流系统。关键点在于正确使用ProxyManager抽象层,并根据部署环境(嵌入式/远程)选择合适的配置方式。随着Bucket4j的版本迭代,对Infinispan的支持也在不断完善,建议开发者关注最新版本的特性更新。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
DBFViewerPlus1.5免费中文版:轻松浏览与编辑DBF文件 Keil.STM32L1xx_DFP.1.2.0.pack使用说明:为STM32L1xx微控制器开发加速 en.X-CUBE-MCSDK-FUL_5.Y.3_v5.5.3资源文件介绍:PMSM电机驱动代码生成工具 探索Java编码问题解决方案:Apache Commons Codec 包下载指南 精通嵌入式Linux编程资源下载:一本嵌入式开发者的必备书籍 IE11离线安装包与必备补丁包:轻松升级IE11的全方位解决方案 C++程序设计谭浩强PDF完整版:一本不可或缺的编程学习宝典 PICMG2.11规范说明书:模块化CompactPCI电源接口标准 探索低版本Google/谷歌浏览器Chrome v72下载仓库:解决兼容性问题的一大利器 GB-T20257.1-2017国家基本比例尺地图图式资源下载:地图编制者的必备工具
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134