Apache Arrow Python测试框架中pytest路径参数升级指南
2025-05-18 10:05:04作者:郜逊炳
背景介绍
Apache Arrow作为高性能内存分析平台,其Python绑定(pyarrow)模块使用pytest作为测试框架。随着pytest 7.0版本的发布,测试框架对路径参数的处理方式进行了重大调整,这直接影响了Arrow项目的测试配置。
问题本质
在pytest的早期版本中,测试收集钩子(pytest_ignore_collect)使用py.path.local类型作为路径参数。这种设计存在以下问题:
- 与Python标准库的pathlib.Path不兼容
- 属于第三方路径库,增加了依赖复杂度
- 类型系统不够现代化
pytest 7.0开始将此参数标记为废弃,并计划在9.0版本完全移除,改用标准的pathlib.Path对象。
影响分析
在Arrow项目的pyarrow/conftest.py文件中,测试收集钩子仍在使用旧式路径参数,这会导致:
- 运行时产生PytestRemovedIn9Warning警告
- 未来版本兼容性问题
- 代码现代化程度不足
解决方案
正确的做法是将钩子函数签名更新为使用pathlib.Path。具体修改包括:
- 参数重命名:从
path改为collection_path - 类型变更:从py.path.local改为pathlib.Path
- 内部逻辑适配:确保所有路径操作使用Path对象的方法
实施建议
对于类似项目进行升级时,建议:
- 检查所有自定义pytest钩子函数
- 特别注意收集相关的钩子(pytest_collect_*系列)
- 更新路径操作逻辑,使用Path对象的原生方法
- 添加兼容性处理,确保支持新旧pytest版本
升级收益
完成此升级后,项目将获得:
- 消除废弃警告,保持构建日志清洁
- 确保未来版本兼容性
- 使用更标准的路径处理方式
- 更好的类型提示支持
总结
Apache Arrow项目对pytest路径参数的及时更新,体现了其对代码质量和未来兼容性的重视。这种升级不仅是简单的参数变更,更是测试基础设施现代化的重要一步,为项目长期健康发展奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
630
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210