首页
/ HuggingFace Datasets 库处理大型数据集时遇到的 PyArrow 浮点类型问题解析

HuggingFace Datasets 库处理大型数据集时遇到的 PyArrow 浮点类型问题解析

2025-05-11 15:06:22作者:魏侃纯Zoe

在深度学习模型训练过程中,数据处理是一个关键环节。HuggingFace Datasets 库作为处理大规模数据集的重要工具,为用户提供了便捷的数据加载、转换和共享功能。然而,在处理特大型数据集时,用户可能会遇到一些技术挑战。

问题背景

当使用 HuggingFace Datasets 库处理接近 1TB 规模的大型数据集时,用户尝试将数据集推送到 Hub 时遇到了 pyarrow.lib.ArrowNotImplementedError: Unhandled type for Arrow to Parquet schema conversion: halffloat 错误。这个错误表明在将 Arrow 格式转换为 Parquet 格式时,系统无法处理 float16(半精度浮点数)数据类型。

技术分析

数据类型兼容性问题

问题的核心在于 PyArrow 对 float16 数据类型的支持程度。在 PyArrow 15.0.0 版本之前,Parquet 格式转换不完全支持 float16 类型。这导致当数据集包含以下特征时会报错:

  • pooled_prompt_embeds
  • prompt_embeds

这些特征在 SDXL(Stable Diffusion XL)训练过程中被存储为 float16 格式,以节省内存空间和提高计算效率。

解决方案演进

  1. 临时解决方案:在 PyArrow 15.0.0 之前,建议将 float16 转换为 float32:

    from datasets import Value
    ds = ds.cast_column("pooled_prompt_embeds", Value("float32"))
    ds = ds.cast_column("prompt_embeds", Value("float32"))
    

    这种转换虽然会增加存储需求,但确保了数据兼容性。

  2. 永久解决方案:PyArrow 15.0.0 版本开始原生支持 float16 到 Parquet 的转换,用户只需升级 PyArrow 即可解决此问题:

    pip install --upgrade pyarrow
    

性能优化建议

对于特大型数据集的上传,可以考虑以下优化措施:

  1. 启用 hf_transfer:这个用 Rust 编写的高效传输工具可以显著提高上传速度:

    pip install hf_transfer
    export HF_HUB_ENABLE_HF_TRANSFER=1
    
  2. 分片策略:合理设置 max_shard_size 参数(如 "500MB")可以优化上传过程。

  3. 数据类型选择:在内存允许的情况下,优先使用 float32 可以避免类型转换问题,同时不会影响模型训练质量。

注意事项

  1. 虽然 PyArrow 15.0.0 支持 float16 的存储,但某些类型转换功能(如从 int64/double 到 float16)尚未完全实现。

  2. 在模型训练场景中,从 float16 转换到 float32 通常不会降低模型质量,但需要确认训练代码是否兼容 float32 输入。

  3. 对于超大规模数据集,目前 Datasets 库还不支持多进程上传,这是未来可能改进的方向。

结论

通过理解数据类型在数据处理流程中的转换机制,用户可以更有效地解决 HuggingFace Datasets 库中的兼容性问题。随着 PyArrow 等底层库的持续更新,大型数据集的处理将变得更加高效和稳定。在实际应用中,用户应根据具体需求平衡数据类型选择、存储效率和计算性能之间的关系。

登录后查看全文
热门项目推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
50
373
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
348
381
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
873
517
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
179
263
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
131
185
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K
harmony-utilsharmony-utils
harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
32
0
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0