Azure Functions 项目中的请求遥测数据过滤方案解析
2025-07-06 08:07:45作者:蔡怀权
在分布式系统架构中,Azure Functions 作为后端服务常常需要与前端负载均衡组件(如 Azure Front Door)配合使用。一个典型的场景是:多个地理分布的 Function App 实例通过健康检查端点(probe endpoint)向负载均衡器报告自身状态。然而,这类高频调用的健康检查请求会产生大量不必要的 Application Insights 遥测数据,导致监控成本上升和有效数据稀释。
核心问题分析
Azure Functions 运行时默认会收集所有 HTTP 触发函数的请求遥测数据(Request Telemetry),这些数据包含响应状态码、持续时间等关键指标。虽然通过 host.json 可以控制日志级别:
{
"version": "2.0",
"logging": {
"logLevel": {
"Function.probe_endpt": "None"
}
}
}
但该配置仅影响日志输出,无法阻止请求级遥测数据的生成和上报。这是由 Functions 运行时的设计决定的——请求遥测属于基础设施层面的监控数据,与业务日志属于不同维度。
技术解决方案
方案一:自定义遥测处理器(推荐)
通过实现 ITelemetryProcessor 接口,可以在数据发送到 Application Insights 前进行动态过滤:
public class HealthProbeFilter : ITelemetryProcessor
{
private readonly ITelemetryProcessor _next;
public HealthProbeFilter(ITelemetryProcessor next)
{
_next = next;
}
public void Process(ITelemetry item)
{
if (item is RequestTelemetry request &&
request.Url.AbsolutePath.Contains("/api/probe"))
{
return;
}
_next.Process(item);
}
}
注册处理器需在 Startup.cs 中配置:
builder.Services.AddApplicationInsightsTelemetryProcessor<HealthProbeFilter>();
方案二:采样策略调整
对于需要保留部分样本的场景,可配置自适应采样:
{
"ApplicationInsights": {
"SamplingSettings": {
"IsEnabled": true,
"MaxTelemetryItemsPerSecond": 5,
"ExcludedTypes": "Request"
}
}
}
架构建议
- 端点分离设计:将健康检查端点部署为独立的 Function App,配置不同的 Application Insights 实例
- 轻量级协议:考虑改用 TCP 健康检查替代 HTTP 检查
- 监控分层:对业务请求和健康检查请求使用不同的监控指标
未来演进方向
Azure Functions 团队正在评估按函数粒度控制请求遥测的特性需求。可能的实现方式包括:
- 在函数绑定属性中添加遥测控制标记
- 支持基于路由模式的 host.json 配置
- 提供运行时环境变量覆盖能力
当前建议采用自定义遥测处理器的方案,该方式具有最好的灵活性和可控性,且不影响系统原有监控体系的其他维度数据收集。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759