在Rocky Linux上编译支持FFmpeg的nginx-vod-module
2025-07-05 08:02:27作者:牧宁李
nginx-vod-module是一个功能强大的视频点播处理模块,它支持多种视频格式的转码和流媒体协议输出。本文将详细介绍如何在Rocky Linux 9系统上编译nginx并集成nginx-vod-module模块,特别是解决FFmpeg库依赖问题。
环境准备
首先需要在Rocky Linux 9系统上安装必要的开发工具和依赖库:
dnf install epel-release -y
dnf config-manager --set-enabled crb
dnf install -y gcc-c++ gcc libgomp cmake3 make openssl-devel zlib-devel pcre-devel ffmpeg-free-devel
这些命令会启用必要的软件仓库并安装编译nginx和nginx-vod-module所需的基础工具链和开发库。
源码下载
获取nginx和nginx-vod-module的源代码:
mkdir /tmp/nginx /tmp/nginx-vod-module
curl -f -L -O https://nginx.org/download/nginx-1.27.5.tar.gz
tar xzvf nginx-1.27.5.tar.gz -C /tmp/nginx --strip 1
curl -f -L -O https://github.com/kaltura/nginx-vod-module/archive/1.33.tar.gz
tar xzvf 1.33.tar.gz -C /tmp/nginx-vod-module --strip 1
编译配置关键点
在Rocky Linux上编译时,最大的挑战是解决FFmpeg库的依赖问题。与Alpine Linux不同,Rocky Linux的FFmpeg-free版本需要特殊处理才能被正确识别。
正确的配置命令应该包含CFLAGS和LDFLAGS参数:
cd /tmp/nginx
CFLAGS="-I/usr/include/ffmpeg" \
LDFLAGS="-L/lib64 -libavcodec -libswscale -libavfilter" \
./configure --prefix=/usr/local \
--add-module=../nginx-vod-module \
--with-http_ssl_module \
--with-file-aio \
--with-threads \
--with-cc-opt="-O3"
这些参数的作用是:
- CFLAGS指定FFmpeg头文件的搜索路径
- LDFLAGS指定库文件路径和需要链接的FFmpeg相关库
编译安装
配置完成后,执行标准的编译安装过程:
make
make install
验证安装
安装完成后,可以通过以下命令验证nginx是否正确链接了FFmpeg库:
ldd /usr/local/sbin/nginx | grep av
如果输出中包含libavcodec、libswscale等FFmpeg相关库,说明编译成功。
常见问题解决
如果在配置阶段遇到FFmpeg库找不到的问题,可以尝试以下解决方案:
- 确认ffmpeg-free-devel包已正确安装
- 检查/usr/include/ffmpeg目录是否存在并包含必要的头文件
- 确认/lib64目录下存在FFmpeg的动态库文件
- 根据系统实际情况调整CFLAGS和LDFLAGS中的路径
性能优化建议
对于生产环境,可以考虑以下优化措施:
- 启用更多编译器优化选项,如-march=native
- 根据CPU核心数调整make的-j参数
- 考虑使用静态链接方式减少运行时依赖
- 针对特定CPU架构进行优化编译
通过以上步骤,您可以在Rocky Linux 9系统上成功构建支持FFmpeg视频处理的nginx服务器,为视频点播服务提供强大的支持。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
286
2.58 K
deepin linux kernel
C
24
7
React Native鸿蒙化仓库
JavaScript
225
304
暂无简介
Dart
575
127
Ascend Extension for PyTorch
Python
114
143
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
604
181
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
609
仓颉编译器源码及 cjdb 调试工具。
C++
120
215
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
449
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205